HyNEAT

HyNEAT

PROJEKTE

HyNEAT – Hydrogen Supply Networks‘ Evolution for Air Transport

Die Dekarbonisierung des Flugverkehrs stellt eine besondere Herausforderung dar, da eine Elektrifizierung nur schwer möglich ist. Der Einsatz von Wasserstoff und seiner Derivate bietet jedoch das Potenzial, in Zukunft klimafreundlich fliegen zu können. Hierzu gilt es zunächst, entsprechende Antriebstechniken zu entwickeln und serienreif zu machen, die auf dem Einsatz von Wasserstoff basieren. Darüber hinaus muss jedoch auch die Infrastruktur im Bereich der Flughäfen weiterentwickelt werden, sodass die Versorgung mit Wasserstoff an Flughäfen gewährleistet ist. Genau dieser Herausforderung stellt sich das vom BMBF geförderte Projekt „HyNEAT“, das verschiedene Universitäten – unter anderem aus Hannover, Braunschweig und Clausthal – in einem Forschungsverbund umsetzen.

Während im Individualverkehr und insbesondere im ÖPNV schon zahlreiche Technologien zur Dekarbonisierung zur Verfügung stehen und immer breiteren Einsatz finden, steht die Dekarbonisierung des Flugverkehrs noch in den Startlöchern. Da die Elektrifizierung von Flugzeugen nur schwerlich und nur bei kleineren Flugzeugen umzusetzen ist, rücken andere Lösungen in den Fokus – so z.B. auch der Einsatz von Wasserstoff. Zentral für den Erfolg sind zunächst effiziente Antriebssysteme, welche die Nutzung von Wasserstoff ermöglichen; darüber hinaus braucht es jedoch auch die infrastrukturellen Voraussetzungen, um die Energiewende im Flugverkehr zu realisieren.

Genau diesen infrastrukturellen Voraussetzungen widmet sich ein Forschungsverbund aus deutschen Universitäten in dem Projekt HyNEAT. Hierzu soll zunächst der Wasserstoffbedarf (bzw. der Bedarf an flüssigem Wasserstoff – LH2) der Luftfahrt analysiert werden. Dies erfolgt in einem übergeordneten Ansatz, der das Luftfahrtsystem und dessen Entwicklung allgemein modelliert. Im zweiten Projektteil wird ein mathematisches Optimierungsmodell entwickelt, das den Einfluss verschiedener Wasserstoff-Preise auf die Streckenplanung und die jeweils abgenommene Wasserstoffmenge von Airlines beschreibt. Die Erkenntnisse aus dem ersten Teilprojekt sollen in diesen Prozess mit einfließen.

Die Berechnungen und Simulationen können dann eine Orientierung und Planungsgrundlage bieten, mit welchem Wasserstoffbedarf bei welchen Preisen an den Flughäfen gerechnet werden kann. Hieraus werden anschließend LH2-Bereitstellungsketten modelliert, welche die relevanten Komponenten für die Wasserstofferzeugung, -komprimierung und -verflüssigung sowie den Transport und die Speicherung miteinbeziehen und optimale Bereitstellungsnetzwerke ermitteln.

Mehr zum Projekt gibt es hier. 

Quelle: HyNEAT

Projektpartner

  • Leibniz Universität Hannover
    • Institut für Elektrische Energiesysteme (Koordination)
    • Institut für Festköperphysik
    • Institut für Umweltökonomik und Welthandel
  • Technische Universität Braunschweig
    • Institut für Automobilwirtschaft und Industrielle Produktion
    • Institut für Mathematische Optimierung
    • Junior Research Group „Overall System Evaluation”
  • Technische Universität Clausthal
    • Professur für Aufbereitung, Recycling und Kreislaufwirtschaftssysteme
  • Technische Universität Hamburg
    • Arbeitsgruppe Resilient and Sustainable Operations and Supply Chain Management
  • Technische Universität München
    • Lehrstuhl für Anlagen- und Prozesstechnik
  • Institut für Luft- und Kältetechnik Dresden
  • Pro Aviation Consult GmbH

Weitere Informationen zu den Projektpartnern gibt es hier.

Bleiben Sie informiert – mit unserem Newsletter „NWN direkt…“

Sie möchten über diese und andere spannende Wasserstoff-Projekte aus Niedersachsen informiert bleiben? Dann melden Sie sich bei unserem Newsletter an!

    Im Gespräch mit Boris Richter

    Im Gespräch mit Boris Richter

    ©STORAG ETZEL

    Beim Projekt H2Cast in Etzel, Niedersachsen, wird die Speicherung von Wasserstoff in Salzkavernen getestet, die zuvor für Erdgas genutzt wurden. 

    Der Schlüssel für Versorgungssicherheit: Energiespeicher

    Fast täglich berichteten die Medien vergangenen Winter von den Füllständen deutscher Gasspeicher. Erstmals kam das Thema Speicher und ihre Bedeutung ins Bewusstsein der Bevölkerung. Insbesondere Für die Energiewende sind Speicher von enormer Bedeutung. Allein im Jahr 2021 wurden 5,8 TWh Erneuerbare Energien abgeregelt, um das Netz nicht zu überlasten. Das entspricht dem jährlichen Stromverbrauch von mehr als 1,5 Mio. Haushalten.

    Im Gegensatz zu Strom kann Wasserstoff kostengünstig und vor allem langfristig gespeichert werden. Speicher spielen für die künftige Energieversorgung deshalb eine wichtige Rolle. Darüber sprachen wir für diese Ausgabe zum Thema Speicher mit Boris Richter, Geschäftsführer der STORAG ETZEL GmbH, dem größten unabhängigen Betreiber von Kavernenspeichern in Deutschland.

    NWN: Aktuell speichern wir in Deutschland große Mengen Gas in unterirdischen Kavernen für den Winter. Künftig wollen wir weg vom Erdgas bzw. LNG und möglichst viele Prozesse elektrifizieren. Brauchen wir die Kavernenspeicher dann noch in ihrem aktuellen Umfang?

    Boris Richter: Die Kavernen haben die Aufgabe Energie, z.B. in Form von Gas zu speichern. Genau dann, wenn Energie in großen Mengen, z.B. im Winter aus dem Fernleitungsnetz entnommen werden, unterstützen die Speicher und decken die Bedarfsspitzen durch Ausspeichern von Gas zusätzlich ab. Die Speicher haben eine Pufferfunktion. Ein Import von Energie, z.B. über den Seeweg per LNG-Tanker erfolgt ja auch diskontinuierlich, also punktuell über eine kurze Zeit. Damit sind Kavernenspeicher zusätzlich gefordert und müssen ihre Funktion erfüllen.

    Aus dem erneuerbaren Strom von der Nordsee will man künftig Wasserstoff herstellen, der dann z.B. in Etzel gespeichert werden kann. Warum speichern wir den erneuerbaren Strom nicht direkt in großen Batterien und speisen den Strom später ins Netz, wenn wir ihr benötigen?

    BR: Rein vom Wirkungsgrad macht es absolut Sinn, die Elektronen direkt zu speichern. Allerdings sind Akkumulatoren derzeit viel zu klein in ihrer Kapazität. Eine Gaskaverne mit Methanmolekülen kann eine Terrawattstunde Energie speichern. Damit kann eine kleine Stadt problemlos mit Energie für ein ganzes Jahr versorgt werden. In Etzel sind aktuell 51 Gaskavernen in Betrieb.

     

    Wasserstoff lässt sich auch überirdisch in mobilen Tanks speichern. Wo ist der Vorteil der unterirdischen Speicherung?

    BR: Das Volumen einer Kaverne ist sehr viel größer als ein gewöhnlicher Tank. Im Schnitt sind die Kavernen in Etzel zwischen 300.000 m³ und 600.000 m³ groß. Das Gasmedium kann mit bis zu 200 bar komprimiert und somit viele Millionen Kubikmeter Gas in eine Kaverne gespeichert werden. Man würde viele hunderte Tanks an der Oberfläche und damit enorm viel Fläche benötigen.

     

    Künftig wollen Sie in Etzel auch Wasserstoff speichern. Im Projekt H2Cast rüstet Storag Etzel bereits eine Kaverne dafür um. Wo stehen Sie aktuell bei dem Projekt?

    BR: Aktuell haben wir einen Dichtheitstest mit Wasserstoff positiv abgeschlossen und werden im Herbst weitere Erprobungen durchführen. Es werden weitere Bauarbeiten über- und untertage durchgeführt.

    „Wir wollen den niedersächsischen Standort Etzel „H2-ready“ machen, d.h. vorbereiten auf den absehbaren Hochlauf der Wasserstoffwirtschaft, der helfen wird, die deutsche Industrie zu dekarbonisieren, sprich CO2-freier und klimafreundlicher zu gestalten. Auf diese Weise wird die Versorgungssicherheit mit CO2-freier Energie in Zukunft gewährleistet. Der Standort ist dabei für Nordwesteuropa von entscheidender Bedeutung. Die Energiewende braucht ab spätestens dem Jahr 2030 diese Großspeicher, da H2-Angebot und -Nachfrage zeitlich und räumlich auseinanderliegen werden. Den Standort zukunftsfähig für nachfolgende Generationen aufzustellen, das ist unser Ziel!“

    Boris Richter

    Kaufmännischer Geschäftsführer, Storag Etzel

    Der Großteil der deutschen Vorhaben für Wasserstoffspeicherung liegt in Niedersachsen. Warum gibt es insbesondere hier so viele Speicher?

    BR: Kavernen sind bergmännisch angelegte, also künstliche Hohlräume in Salzformationen. Man benötigt demzufolge neben der Technologie auch einen Lagerstättenkörper aus Salz. Gewöhnlicherweise sind dies Salzstöcke oder Salzkissen. Diese Salze sind vor ca. 270 Millionen Jahre im Erdzeitalter des Perms entstanden. Ein Meer ist in mehreren Schritten ausgetrocknet und Restbestandteile des Meeres, weitestgehend das Salz, hat sich abgelagert. Das damalige Meer entstand aufgrund einer Beckenstruktur, eben im norddeutschen Becken. Damit haben wir den örtlichen Bezug auch gleich hergestellt. Denn ca. 70 Prozent der Salzvorkommen an Land liegen bezogen auf Deutschland in Norddeutschland und weitestgehend in Niedersachsen. Deshalb gibt es hier in Niedersachsen viele Kavernenspeicher, weil eben viel Salz unter unseren Füßen vorhanden ist.

     

    Was sind die größten Herausforderungen bei der unterirdischen Speicherung von Wasserstoff?

    BR: Wir müssen viele technische, aber auch genehmigungsrechtlichen Fragen beantworten. An aller erster Stelle stehen die Sicherheit und der Schutz der Bevölkerung, unserer Mitarbeiter und unserer Anlage im Vordergrund. Da wir ein Bergbaubetrieb sind, unterliegen wir dem Bergrecht und unsere Genehmigungsbehörde ist das LBEG in Clausthal-Zellerfeld. Das Bergamt ist unsere Aufsichtsbehörde und prüft sehr gewissenhaft unsere Anträge.

     

    Über H2Global soll Ende 2024 erstmals grüner Wasserstoff nach Deutschland importiert werden. In den kommenden Jahren gehen die ersten Großelektrolyseure ans Netz. In Niedersachsen werden bald große Menge Wasserstoff entstehen und anlanden. Bis wann brauchen wir funktionsfähige Wasserstoffspeicher?

    BR: Wir gehen davon aus, dass ab 2027/2028 Wasserstoffspeicher benötigt werden und der Markthochlauf für Wasserstoff erfolgt. Dies bedeutet aber auch, dass die Kavernenspeicher auch entsprechend mit Wasserstoffleitungen angeschlossen sind. Die Infrastruktur dafür muss aufgebaut sein, sonst funktionieren Speicher nicht. Die Leitungen sind sowas wie Lebensadern, in denen die Energie transportiert wird.

     

    In unserem künftigen Energiesystem aus Erneuerbaren Energien müssen wir große Mengen Wasserstoff einspeichern, um Versorgungssicherheit gewährleisten zu können. Angenommen wir rüsten alle bestehenden Kavernenspeicher um – reichten die aktuellen Kapazitäten für den künftigen Speicherbedarf überhaupt aus?

    BR: Wenn für die Industrie komplett Erdgas durch Wasserstoff ersetz werden soll und wir davon ausgehen, dass dies über Dekaden erfolgt, dann wird der derzeitige Speicherhohlraum nicht ausreichen. Denn betrachtet man das energetisch, so hat Wasserstoff fast viermal weniger Energie als Erdgas. Bedeutet also, um dieselbe Energie zu speichern, bedarf es viermal mehr Speichervolumen. Man bedenke auch, dass neben dem Wasserstoffspeicherbedarf auch noch der Speicherhohlraum, wenn auch abnehmend für Erdgas bereitgestellt werden muss.

     

    Über welche Größenordnung sprechen wir beim künftigen Speicherbedarf?

    BR: Aktuelle Studien sehen den Speicherbedarf für Wasserstoff im Jahr 2050 bei 74 Terrawattstunden.

     

    Wie lange wird es dauern, entsprechende Kapazitäten aufzubauen?

    BR: In Etzel benötigen wir ca. zwei bis vier Jahre, um bestehende Kavernen für die Wasserstoffspeicherung umzurüsten und etwas länger, um an 24 neu geplanten Lokationen neue Wasserstoffkavernen im Salzstock zu errichten. Die bergrechtlichen Genehmigungen, um neue Kavernen zu bauen haben wir bereits. Den Nachweis, dass Wasserstoff problemlos in Kavernen gespeichert werden kann, erbringen wir die kommenden Jahre mit unseren Partnern im H2CAST Forschungsprojekt. Das Projekt ist durch das Land Niedersachsen und den Bund gefördert.

     

    Vielen Dank, Herr Richter. 

    H2Marsch

    Der Zugang zu Wasserstoff wird sukzessive zu einem zentralen Standortfaktor. In der Region Wesermarsch hat sich daher die Allianz „H2Marsch“ gebildet, welche die Versorgung der Region mit Wasserstoff sicherstellen will. Hierdurch sollen nicht nur 6.000 Arbeitsplätze gesichert, sondern perspektivisch auch 240.000 Tonnen CO2-Emissionen pro Jahr reduziert werden.

    Sektorenkopplung für den Eigenbedarf

    Sektorenkopplung für den Eigenbedarf – das Pilotprojekt KRUH2 der OGE stellt diesen Aspekt bei der Wasserstoffproduktion, Speicherung und Nutzung in den Fokus.

    CHESS – Aufbau einer Wasserstoffinfrastruktur in der Wesermarsch

    Im Rahmen des Projektes CHESS (Compressed Hydrogen Energy Storage Solution) in Huntorf (Landkreis Wesermarsch) wollen EWE und Uniper gemeinsam ihre jeweilig vorhandene Gas- und Strominfrastruktur umrüsten. Ziel ist es, vor Ort eine neue Wasserstoffinfrastruktur schnell, effizient und kostensparend aufzubauen.

    Green Wilhelmshaven

    In dem Projekt Green Wilhelmshaven wird der Import von Wasserstoff mittels Ammoniaks im Großmaßstab ermöglicht; gleichzeitig jedoch auch grüner Wasserstoff per Elektrolyse vor Ort produziert. Hierdurch werden Kapazitäten aufgebaut, die zusammen 10-20% des Wasserstoff-Bedarfs ganz Deutschlands im Jahr 2030 decken könnten.

    Endlos-Energie-Zentrum Schaumburg

    In Bückeburg entsteht auf drei Etagen mit rund 1000m² das größte, und das bisher einzige vollständig autarke Bürogebäude in Deutschland.

    Energiemodul der Zukunft

    Für eine erfolgreiche Transformation und Energiewende braucht es qualifizierte Fachkräfte – sei es in der Planung, im Handwerk oder in der Industrie. Im Rahmen des Projekts „Energiemodul der Zukunft“ (EmZ) will das Technologiezentrum Nordenham daher jungen Menschen aufzeigen, welche Anforderungen im Bereich der Erneuerbaren Energiesysteme bestehen und exemplarisch darstellen, wie die Energieversorgung des Technologiezentrums auf Erneuerbare umgestellt werden kann. Hierzu soll auch Wasserstoff zum Einsatz kommen, wofür das Projekt vom Land Niedersachsen gefördert wird.

    Im Gespräch mit Boris Richter

    Das NWN im Gespräch mit Boris Richter, Geschäftsführer von Storag Etzel, zur Bedeutung von Wasserstoff-Speichern für die Energiewende.

    Wasserstoffspeicher in Etzel

    In Etzel untersuchen Experten im Verbundvorhaben H2CAST, ob die lokalen Salzstöcke zur Speicherung großer Mengen Wasserstoffs geeignet sind.

    Wasserstofftrocknung durch Absorption

    Bilfinger entwickelt aktuell in Cloppenburg eine Demonstrationsanlage zur Wasserstofftrocknung. Die Trocknung ist nötig, um den Wasserstoff nach der Speicherung (z.B. in Kavernen) wieder verstromen oder ins Netz einspeisen zu können.

    Hydrogen Cavern for Mobility

    Im Projekt HyCAVmobil (Hydrogen Cavern for Mobility) erforscht EWE mit Partnern unter welchen Bedingungen sich reiner Wasserstoff in Salzkavernen einlagern lässt.

    Im Gespräch mit Lars Eichhorn

    Im Gespräch mit Lars Eichhorn

    Credit DBT Inga HaarQuelle: LUH

    ©Technik-Salon, Leibniz Universität

    Innovationslabor „Nachhaltige Wasserstoff-Verbrennungskonzepte“ (WaVe)

    Mehr als 20 Forschungsteams in Niedersachsen arbeiten an Lösungen für die Wasserstoff-Wirtschaft. Viele davon im Rahmen der fünf Innovationslabore, die vom EFZN koordiniert werden.

    Ein Beitrag zur stärkeren Vernetzung von Wissenschaft und Wirtschaft war die Vorstellung des EFZN-Wasserstoff-Kompetenzpapieres. Das Papier ist eine „Leistungsschau“ des seit 2018 bestehenden Forschungsverbundes Wasserstoff Niedersachsen.

    Das NWN hat die Veröffentlichung zum Anlass genommen sich mit Lars Eichhorn, Wissenschaftlicher Mitarbeiter am Institut für Technische Verbrennung und Forschender im Innovationslabor WaVe, zu unterhalten.

    Herr Eichhorn, Sie arbeiten in einem der fünf Innovationslabore in Niedersachsen. Womit beschäftigt sich das WaVe?

    Eichhorn: Das Innovationslabor beschäftig sich in drei Projekten mit nachhaltigen Wasserstoff-Verbrennungskonzepten (WaVe). Ein Projekt beschäftigt sich mit Wasserstoffmotoren in Fahrzeugen. Dort wird untersucht, mit welchen Konzepten und angepassten Komponenten bestehende Nutzfahrzeugmotoren mit Wasserstoff betrieben werden können. Das zweite Projekt untersucht, wie in einem Gaskraftwerk Erdgas durch Wasserstoff ersetzt werden kann. Beim dritten Projekt, an dem ich persönlich arbeite, möchten wir zeigen, dass mit Wasserstoff Primärregelleistung in Gas- und Dampfkraftwerken bereitgestellt werden kann. Die dafür notwendige kurzfristige Leistungssteigerung einer Dampfturbine wird mit zusätzlichem Prozessdampf erzeugt, der das Reaktionsprodukt der Wasserstoff-Sauerstoff-Verbrennung ist.

    Wieso können solche Prozesse nicht elektrifiziert werden?

    Eichhorn: In dieser und vielen weiteren Anwendungen werden Temperaturniveaus jenseits der 500 Grad Celsius benötigt. Vor allem in der Produktion von Keramik, Glas, oder Zement ist der Wärmebedarf sehr groß. Dort ist die thermische Nutzung bedeutend effizienter als die elektrische Nutzung von Wasserstoff.

    Sie versuchen hier diese Verbrennung noch effizienter zu machen. Wie funktioniert das?

    Eichhorn: Besonders anspruchsvoll ist hierbei der Umgang mit der sehr heißen Wasserstoff-Sauerstoff-Flamme, welche bei atmosphärischem Druck und Temperaturen über 3000 °C verbrennt. Dazu entwickeln wir einen Brenner, welcher der thermischen Belastung standhalten kann und für eine optimale Vermischung der Gase, sowie eine betriebssichere Stabilisierung der Flamme sorgt. Im Vordergrund steht die Reduzierung der Verbrennungstemperatur auf ein technologisch beherrschbares Niveau.

    Und das machen Sie mit Wasser?

    Eichhorn: Richtig. In vielen Fällen wird dafür Wasserdampf genutzt, welcher der Verbrennung zugefügt wird; herausfordernd sind die erforderlichen Mengen. In unserem Forschungsansatz wird die Flamme mit flüssigem Wasser gekühlt, welches durch den Sauerstoff zerstäubt wird und als Wasser-Sauerstoff-Spray in die Brennkammer eintritt. Innerhalb der Brennkammer erfolgen die Mischung und Oxidation des Wasserstoffs. In ersten Versuchen mit dem neuen Brenner konnte die Flammentemperatur durch das innovative Konzept auf unter 2000 °C reduziert werden. Weitere Vorteile der Nutzung von flüssigem Wasser sind die in der Zuleitung geringeren Leitungsquerschnitte im Vergleich zum dampförmigen Wasser und dass keine Primärenergie benötigt wird, um Wasserdampf herzustellen. Dadurch ist diese Technologie deutlich flexibler und schneller einsatzbereit.

    Dampf lässt sich ja aber schon relativ zügig herstellen. Wo brauchen wir denn diese zeitliche Flexibilität?  

    Eichhorn: Ziel der Primärregelleistung ist die sekundenschnelle Bereitstellung von zusätzlicher Leistung, um die Stabilität des Stromnetzes zu gewährleisten. Das Hochfahren eines Dampferzeugers dauert zu lange und eignet sich daher nicht. Stattdessen verwendet unser Forschungsansatz Flüssigwasser – ohne weitere Vorbereitung.

    Sie arbeiten darüber hinaus auch in einem Grundlagenlabor am Wasserstoff Campus Hannover. Was wird hier untersucht?

    Eichhorn: Das Grundlagenlabor wurde in erster Linie geschaffen, um bei den Studierenden das Interesse an Wasserstoff im Allgemeinen und vor allem an nachhaltigen verbrennungstechnischen Themen zu wecken. Und tatsächlich erleben wir zwar abnehmende Teilnehmerzahlen bei den Vorlesungen zu Verbrennungsmotoren, jedoch steigendes Interesse seitens der Studierenden an Wasserstofftechnologien und alternativen Kraftstoffen. Insbesondere durch das Labor erhalten wir einige Initiativbewerbungen für unsere innovativen Forschungsprojekte.

    Vielen Dank Herr Eichhorn.

     

     

     

     

    Anpassung eines Blockheizkraftwerks für einen zukünftigen Wasserstoffbetrieb

    Anpassung eines Blockheizkraftwerks für einen zukünftigen Wasserstoffbetrieb

    PROJEKTE

    ©EWE/C3 Visual LabQuelle: Atron

    Durch die Umstellung auf den Wasserstoffbetrieb können Blockheizkraftwerke Umwelt- und klimafreundlich betrieben werden. ©A-TRON Blockheizkraftwerke GmbH

    Anpassung eines BHKW durch additiv gefertigte Komponenten für einen zukünftigen Wasserstoffbetrieb

    Blockheizkraftwerke (BHKW) bieten insbesondere für mittelgroße bis große Immobilien wie Hotels, Mehrfamilienhäuser, Pflegeeinrichtungen oder ähnliche Gebäude eine effiziente Möglichkeit zur Beheizung. Denn BHKW können im Gegensatz zu zentralen Gas- oder Kohlekraftwerken die entstehende Wärmeenergie fast vollständig zum Heizen nutzen. Hierdurch können zwar Wirkungsgrade von über 90 Prozent erreicht werden – bei der Verbrennung von konventionellen Treibstoffen wie Erdgas oder Diesel entstehen jedoch Schadstoffe wie CO2 oder Feinstaub. Um den Betrieb klimafreundlich zu gestalten, wollen die A-TRON Blockheizkraftwerke GmbH sowie die beiden Institute ITV und IPeG der Leibniz Universität in einem vom Land Niedersachsen geförderten Projekt die Nutzung von Wasserstoff in BHKW ermöglichen – und das langfristig und klimafreundlich.

    Ein BHKW bietet eine Form der dezentralen Energieerzeugung, die sich insbesondere für mittelgroße und große Gebäude anbietet. Es besitzt einen Verbrennungsmotor, in dem ein Treibstoff verbrannt wird. Die hierbei entstehende Wärmeenergie kann fast vollständig zum Heizen genutzt werden, wodurch sich hohe Wirkungsgrade von über 90% erreichen lassen. Da momentan jedoch in der Regel fossile Treibstoffe wie Erdgas oder Diesel eingesetzt werden, entstehen bei der Verbrennung aktuell noch klimaschädliche Schadstoffe wie CO2 oder auch Feinstaub. Um die effiziente Technologie in Zukunft klima- und umweltfreundlich nutzen zu können, wird im Rahmen des Projekts „Anpassung eines BHKW durch additiv gefertigte Komponenten für einen zukünftigen Wasserstoffbetrieb“ von den Projektpartnern A-TRON sowie dem Institut für Technische Verbrennung (ITV) und dem Institut für Produktentwicklung und Gerätebau (IPeG) der Leibniz Universität Hannover untersucht, wie Wasserstoff als Treibstoff in BHKW verwendet werden kann. Dabei geht es nicht nur um die grundsätzliche Machbarkeit, sondern insbesondere darum, langfristig einsetzbare Wasserstoff-BHKW zu entwickeln.

    Innovativer Ansatz soll den Wasserstoffbetrieb ermöglichen

    Hierzu werden im Rahmen des Projekts zwei Ziele verfolgt: Im ersten Teilziel soll grundsätzlich der Betrieb eines BHKW mit Wasserstoff ermöglicht werden. „Zunächst geht es darum, die Machbarkeit einer Wasserstoff-Nutzung in BHKW zu zeigen. Da dies Änderungen der Technologie erfordert, wird im Rahmen des Projekts ein hochinnovativer Ansatz gewählt, der nicht nur die verbrennungstechnischen, sondern auch die thermischen Randbedingungen verbessert.“ So Professor Dinkelacker, geschäftsführender Leiter vom ITV, zu der Zielrichtung des Projekts.

    Da Wasserstoff sehr zündfreudig ist, dürfen die verwendeten Bauteile nicht zu heiß werden. Ziel ist es daher, den Verbrennungsmotor mit geeigneten Komponenten und Bauteilen umzurüsten, die gut gekühlt werden können. Besonders kritisch ist hierbei der Zylinderkopf des Motors, der lokal heiße Bereiche aufweisen kann – was das Risiko einer ungewollten Zündung erhöht. Um einen hohen Wirkungsgrad zu erreichen, muss zudem die Wärmegewinnung aus dem Abgas verbessert werden. Die Temperatur des Abgases ist im Vergleich zu Erdgas-Motoren nämlich geringer, weshalb ein Wärmetauscher zur effizienten Überführung der Wärme in den Heizkreis entwickelt werden soll.

    Quelle: Atron

    ©A-TRON Blockheizkraftwerke GmbH

    Haltbarkeit der Bauteile soll erhöht werden

    Im zweiten Teilziel soll zudem die Haltbarkeit der Wasserstoff-BHKW erhöht werden. Da bei der Herstellung der BHKW bereits nicht unerhebliche Emissionen entstehen, sollen diese möglichst lange verwendet werden. Hierzu muss die Haltbarkeit der einzelnen Bauteile erhöht werden – speziell jedoch die der Laufbuchse, deren Lebenszeit am stärksten begrenzt ist. Gegen den Verschleiß soll insbesondere durch die additive Fertigung (3D-Druck) von modernen Komponenten vorgegangen werden. Zudem wird der Verschleiß im Rahmen des Projekts bereits während des Betriebs messbar gemacht. Hierdurch kann der kostenintensive Ausbau des gesamten Motors ersetzt werden, der aktuell für eine Verschleißmessung (und den Laufbuchsenaustausch) noch nötig ist. Zudem wird ein effizienteres Wärmemanagement ermöglicht.

    Professor Lachmayer, geschäftsführender Leiter vom IPeG, betont die Bedeutung des Projekts für eine erfolgreiche Wärmewende: „Sowohl die Wasserstoffverbrennung in Blockheizkraftwerken als auch die Einbindung der additiven Fertigung in die Motorentechnologie ist neuartig. Wenn BHKW mit Wasserstoff ohne Treibhausgas-Emission betrieben werden können, ist dies ein zentraler Baustein für die Wärmewende.“

    Land Niedersachsen fördert das Projekt

    Zu den Projektpartnern gehört die A-TRON Blockheizkraftwerke GmbH sowie mit dem Institut für Technische Verbrennung und dem Institut für Produktentwicklung und Gerätebau zwei Institute der Leibniz Universität Hannover. Das Projekt wird mit knapp 800.000 € vom Land Niedersachsen gefördert und soll bis Oktober 2024 laufen.

    „Als Ministerium unterstützen wir das Vorhaben ausdrücklich. Schließlich gilt es auszuloten, welche effektiven Rückverstromungsmöglichkeiten es für Wasserstoff gibt und wie die dabei entstehende Wärme genutzt werden kann. Außerdem wollen wir so schnell wie möglich wegkommen von fossilen Energieträgern. Wasserstoff bietet dazu viele Möglichkeiten, auch dem gehen wir in Pilot- und Demonstrationsvorhaben intensiv nach.“

    Christian Meyer, Niedersächsischer Energie- und Klimaschutzminister

    Während die Institute der Leibniz Universität Hannover die gewonnenen Erkenntnisse im Anschluss an das Projekt auf weitere Forschungsfelder übertragen wollen, plant die A-TRON GmbH mit den neuen BHKW den aktuellen Kundenkreis zu beliefern und weitere Märkte zu erschließen. Daniel Steck, Entwicklungsleiter bei der A-TRON Blockheizkraftwerke GmbH, betont in diesem Kontext die Chancen, die sich beim Hochlauf der Wasserstoffwirtschaft ergeben: „Aktuell vertreiben wir bereits umweltfreundliche BHKW – z.B. in Form von Biogas- oder Klärgasanlagen. Mit dem Projekt wollen wir unser Portfolio jedoch strategisch erweitern. Mit der erfolgreichen Anpassung eines BHKW auf den Wasserstoffbetrieb können wir in einen wichtigen Zukunftsmarkt investieren und zum Aufbau einer treibhausgasneutralen Wasserstoff-Infrastruktur beitragen.“

    Partner

    ©Ahrens Dachtechnik
    ©DLR Institut für vernetzte Energiesysteme
    ©DLR Institut für vernetzte Energiesysteme

    Die A-TRON Blockheizkraftwerke GmbH ist ein international tätiger Entwickler und Hersteller von Mini-Blockheizkraftwerken. Bereits heute werden umweltfreundliche BHKW in Form von Biogas- oder Klärgasanlagen vertrieben – mit dem Wasserstoff-BHKW wird ein weiteres klimafreundliches Angebot hinzugefügt. 

    Logo: © A-TRON Blockheizkraftwerke GmbH

     

     

    Am Institut für Produktentwicklung und Gerätebau (IPeG) werden die Themen Entwicklungsmethodik, Systems Engineering, Additive Fertigung und Optomechatronik behandelt. Das Institut realisiert in ihren Werkstätten und Laboren die integrierte Produktentwicklung von der Idee bis zum Prototypen. 

    Logo: © Institut für Produktentwicklung & Gerätebau

    Das Institut für Technische Verbrennung  (ITV) forscht und lehrt in den Bereichen der turbulenten Verbrennung, der Spray-Einspritzungsprozesse, der diesel- und gasmotorischen Brennverfahren und der motorischen Tribologie. Neu sind Themen der „nachhaltigen Verbrennung“. 

    Logo: © Institut für Technische Verbrennung

     

     

    Schrand Energy Plant

    Schrand Energy Plant

    PROJEKTE

    Quelle: MU

    Prof. Dr. -Ing. Reckzügel (Professor der Hochschule Osnabrück, Professor für innovative Energietechnik und Thermische Energietechnik), Patrick Wösten (Hochschule Osnabrück, wissenschaftlicher Mitarbeiter in dem Projekt), Minister Meyer, Jörg Wilke (Geschäftsführer „Northern Institute of Thinking“) (zweite Reihe), Timo Schrand (Geschäftsführer von schrand.energy GmbH & Co. KG), Paul Hoffmann (Projektleiter Wasserstoff  bei schrand.energy GmbH & Co. KG.) (zweite Reihe), Uwe Bartels (Landesminister a. D.)

    Autarkes Energiesystem im Gebäude

    In Essen (Oldenburg) plant das Unternehmen schrand.energy GmbH & Co. KG einen CO2-neutralen und energieautarken, firmeneigenen Neubau. Das Konzept namens Schrand Energy Plant wird von vornherein als modulare, reproduzierbare und skalierbare Gesamtlösung entwickelt, um es auf andere Gebäude übertragen zu können. 

    Die Schrand Energy Plant nutzt eine Photovoltaikanlage, um den jeweiligen Firmenstandort mit Erneuerbarer Energie versorgen zu können. Die überschüssige Energie wird anschließend in einer PEM-Elektrolyseeinheit verwendet, um Wasser in Wasser- und Sauerstoff zu spalten, diese Gase in Druckgastanks zwischenzuspeichern und dann bei Bedarf in einer Wasserstoffbrennstoffzelle in elektrischen Strom und Wärme umzuwandeln. Die Energy Plant soll so ein Gesamtsystem aus Energiespeicher, Elektrolyseur, Brennstoffzelle und Wasserstofftank bieten, das an den jeweiligen Verbraucher angepasst werden kann.

    Am 7. März übergab der Niedersächsische Umwelt- und Energieminister Christian Meyer die Förderung.  Schrand.energy erhält für die Umsetzung eine Förderung von rund 2,7 Mio. Euro und der Kooperationspartner Hochschule Osnabrück 230.000 Euro. 

    Umwelt- und Energieminister Christian Meyer: „Erneuerbare Energien sind unerlässlich, wenn wir das Klima schützen wollen. Manchmal haben wir jedoch große Mengen, ohne sie speichern zu können. Das Projekt schlägt zwei Fliegen mit einer Klatsche, indem es Solarenergie und Wasserstofftechnologie vereint: Überschüssige Solarenergie kann so weiterverwendet, Wasserstoff mit erneuerbaren Energien hergestellt werden. Das schont das Klima und den Geldbeutel und stärkt die heimische Wirtschaft mit günstiger, sauberer Energie.“

     

    TransHyDE

    TransHyDE

    PROJEKTE

    TransHyDE – Aufbau einer Wasserstoff-Transport-Infrastruktur

    Um den deutschen Bedarf an grünem Wasserstoff zu decken und die Energiewende umzusetzen, braucht es große Mengen Wasserstoff – von denen ein nicht unerheblicher Teil importiert werden muss. Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Wasserstoff-Leitprojekt TransHyDE will daher Transport-Möglichkeiten technologieoffen weiterentwickeln und zudem entsprechende Normen schaffen, um hierdurch den Aufbau der Wasserstoff-Infrastruktur zu ermöglichen und den Markthochlauf zu unterstützen.

    Auf unserer Seite werden zahlreiche Projekte vorgestellt, in denen der Transport von Wasserstoff im Fokus steht. Dabei gibt es ganz unterschiedliche Herangehensweisen, sei es der Transport in Hochdruckbehältern, in bestehenden Gasleitungen oder mittels grünen Ammoniaks oder flüssigen organischen Trägerstoffen (liquid organic hydrogen carriers [LOHC]). Diese technologische Vielfalt soll im Rahmen des Wasserstoff-Leitprojekts TransHyDE weiter untersucht werden – denn in den genannten Handlungsfeldern gibt es weiterhin großen Forschungsbedarf. So gibt es derzeit insbesondere im Bereich der Normierung, also z.B. bei Standards oder Sicherheitsvorschriften keine einheitlichen Regelungen – was den Markthochlauf aktuell noch behindert. Damit die genannten Transporttechnologien schnell ins Energiesystem integriert werden können, braucht es demnach neue Standards, Normen und Zertifizierungen, denen sich ein eigenes Arbeitspaket im Rahmen von TransHyDE widmet. 

    TransHyDE wird in verschiedenen Teilprojekten umgesetzt, in denen die unterschiedlichen Transportmöglichkeiten in der Praxis, aber auch aus Sicht der Forschung genauer in den Blick genommen werden.

    Quelle: Projektträger Jülich im Auftrag des BMBF

    Die Umsetzung erfolgt in Teilprojekten (für weitere Informationen bitte ausklappen):

    „Mukran"

    Am Mukran Port auf Rügen wird ein innovativer Hochdruck-Kugelspeicher für Wasserstoff entwickelt. Dieser soll dazu in der Lage sein, auf hoher See in der unmittelbaren Umgebung von Offshore-Wind- und Elektrolyseanlagen vom Projekt H2Mare eingesetzt zu werden. Dort wird mittels Windenergie grüner Wasserstoff erzeugt, der im Kugelspeicher zwischenzeitlich gespeichert werden soll.

    „GET H2“

    Damit Wasserstoff flächendeckend zur Verfügung steht, soll im Projekt GET H2 die Nutzung von ehemaligen Erdgasleitungen für den Transport von Wasserstoff erforscht werden. Aktuell fehlen zudem Normen und Überwachungsstandards bei der Umstellung von Erdgasleitungen, weshalb in GET H2 ein Testumfeld aufgebaut wird, in dem Material- und Sicherheitsfragen beantwortet werden können.

    „Campfire“

    Das Projekt Campfire soll das Potential von Ammoniak für den Wasserstoff-Transport untersuchen und dabei insbesondere die Rückgewinnung von Wasserstoff aus Ammoniak in den Blick nehmen. Ziel ist hierbei insbesondere, die Effizienz bei der Wiederauslösung des Wasserstoffs zu verbessern.

    „Helgoland“

    Im Projekt Helgoland wird eine Wasserstoff-Logistikkette über Land und über See aufgebaut. Via Pipeline soll der grüne Wasserstoff von der Offshore-Anlage des Leitprojekts H2Mare auf die Insel Helgoland gebracht werden und dort für einen weiteren Transport mit LOHC gebunden werden. Anschließend kann der gebundene Wasserstoff mit bestehender Infrastruktur ähnlich wie Öl verschifft werden und im Hamburger Hafen in einer Dehydrieranlage wiederum vom LOHC gelöst und nutzbar gemacht werden.

    „Forschungsverbünde"

    Insgesamt fünf Verbünde von Forschungseinrichtungen unterstützen die Projekte mit wissenschaftlichen Erkenntnissen. Dabei geht es z.B. um Material- und Komponentenforschung, Betriebssimulationen oder auch sicherheitsrelevante und ökologische Fragen. Der Wissensstand und aktuelle Handlungsempfehlungen werden in einer Roadmap festgehalten und allen Projektpartnern zur Verfügung gestellt.

    Weitere Informationen

    Aus Niedersachsen nehmen drei Unternehmen an dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekt teil. Hierzu zählt die ROSEN GmbH, die Salzgitter Mannesmann Forschung GmbH sowie die Inherent Solutions Consult GmbH & Co. KG

    Mehr zu dem Projekt finden Sie hier.