Wasserstofftrocknung durch Absorption

Wasserstofftrocknung durch Absorption

PROJEKTE

   

©UniperQuelle: Bilfinger

Die Wasserstofftrocknungsanlage von Bilfinger soll die großtechnische Wasserstoffbehandlung ermöglichen.

Dezentrale Wasserstofftrocknung durch Absorption

Die Speicherung von grünem Wasserstoff ist ein zentrales Instrument, um die Versorgungssicherheit mit erneuerbaren Energien zu gewährleisten. Kavernenspeicher können dabei – insbesondere in Niedersachsen – geeignete Speichermöglichkeiten bieten. Um den Wasserstoff jedoch wieder verstromen oder aus den Kavernen ins Leitungsnetz einspeisen zu können, muss dieser zuvor getrocknet werden. Bilfinger entwickelt in diesem Zusammenhang aktuell in Cloppenburg eine Demonstrationsanlage, in welcher der Wasserstoff durch Absorption von Feuchtigkeit befreit wird. Diese sogenannte „Absorptionstrocknung“ wird bereits in großem Maßstab für Erdgas zur Gasspeicherung realisiert – und soll nun auch zur Trocknung großer Mengen Wasserstoffs eingesetzt werden.

News (26.05.2023): Projekt zur Wasserstoff-Speicherung erreicht nächste Phase: H2dry Anlage von Bilfinger wird am EWE Gasspeicher-Standort in Rüdersdorf aufgebaut

Bilfinger hat in Cloppenburg eine Demonstrationsanlage entwickelt, in welcher der Wasserstoff durch Absorption von Feuchtigkeit befreit wird.

Die sogenannte „H2dry Anlage“ wurde nun zum Gasspeicherstandort der EWE AG nach Rüdersdorf bei Berlin geliefert, wo die Speicherung von Wasserstoff in unterirdischen Kavernen exemplarisch getestet wird. Die Erkenntnisse sollen auf Kavernen mit dem 1.000 fachen Volumen übertragen werden können. Mehr erfahren

Der im Rahmen des Projekts entwickelte Trocknungs-Prozess ermöglicht eine effiziente und großtechnische Wasserstoffbehandlung, die für die Speicherung und anschließende Netzeinspeisung von grünem Wasserstoff essenziell ist. Da die Technologie im Rahmen der Erdgastrocknung bereits erprobt ist, können in der Anlage auch große Mengen Wasserstoff kostengünstig getrocknet werden, welche für den Aufbau der Wasserstoffwirtschaft nötig sind. Nach der Ausspeicherung – zum Beispiel aus Kavernen – wird der Wasserstoff im Rahmen der Absorptionstrocknung mittels einer geeigneten Waschflüssigkeit getrocknet und kann anschließend entweder verstromt oder in das Transportnetz eingespeist werden. Durch die Anlage soll Wasserstoff ähnlich flexibel zur Energieversorgung beitragen können wie Erdgas.  

Das gemeinsame Projekt der Bilfinger Engineering & Maintenance GmbH und des Instituts für Thermodynamik der Leibniz Universität Hannover wird vom Land Niedersachen gefördert und ist ein wichtiger Bestandteil der Energiewende, wie der niedersächsische Umweltminister Olaf Lies betont: „Die Umsetzung dieses Projektes ist ein großer Schritt für die Energiewende. Dezentrale Wasserstofftrocknung durch Absorption für Gasspeicher und Netzeinspeisung, ist ein wesentlicher Schritt für die Wasserstoffwirtschaft. Mit dieser Technologie kann der Wasserstoff großtechnisch ökonomisch behandelt werden und das ermöglicht die Integration von Erneuerbaren Energien in unser Energiesystem. So kann der mit Hilfe von Wind- und Solarstrom erzeugte Wasserstoff oder der demnächst in Kavernen gespeicherte Wasserstoff in das Transportnetz eingespeist werden.“

Nach Fertigung bei der Bilfinger Engineering & Maintenance GmbH im niedersächsischen Cloppenburg erfolgt Anfang 2023 eine Testphase sowie ein Demonstrationsbetrieb in Rüdersdorf in Brandenburg, wo die EWE Gasspeicher GmbH aktuell im Rahmen des Projekts HyCAVmobil eine Salzkaverne als potenziellen Speicherort für Wasserstoff untersucht.

Mehr zu dem Projekt

Google Maps

Mit dem Laden der Karte akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Karte laden

Projektbeteiligte

Bilfinger ist ein international tätiger Industriedienstleister. Ziel der Konzerntätigkeit ist es, die Effizienz von Anlagen der Prozessindustrie zu steigern, ihre Verfügbarkeit zu sichern, Emissionen zu reduzieren und die Instandhaltungskosten zu senken. Bilfinger bietet dabei Leistungen in verschiedenen Bereichen an; im Consulting, Engineering, in der Fertigung, Montage und Instandhaltung bis hin zu Umwelttechnologien und digitalen Anwendungen.

Die Bilfinger Engineering & Maintenance GmbH ist Teil des internationalen Bilfinger Konzerns und im Industrieservice tätig. Mehr als 3.000 Mitarbeiterinnen und Mitarbeiter planen und überwachen Anlagen in der Prozessindustrie u.a. in den Bereichen Chemie, Petrochemie und Pharma.

Die Gottfried Wilhelm Leibniz Universität Hannover ist mit rund 30.000 Studierenden Niedersachsens größte Universität. Das Institut für Thermodynamik vertritt die Technische Thermodynamik in der Fakultät für Maschinenbau der Leibniz Universität Hannover in der Lehre und Forschung.

 

Clean Hydrogen Coastline

Clean Hydrogen Coastline

PROJEKTE

Etwa 400 Megawatt Elektrolysekapazität soll bis 2026 im Projekt „Clean Hydrogen Coastline“ in der Region Nordwest aufgebaut werden. Bildquelle: ©EWE

Clean Hydrogen Coastline

Der deutschen Nordseeküste kommt beim Aufbau einer bundesweiten Wasserstoffwirtschaft eine besondere Bedeutung zu. Aufgrund des hohen Angebots von erneuerbaren Energien kann Wasserstoff in der Region nicht nur erzeugt, sondern auch gespeichert, über bestehende Strom- und Gas-Infrastruktur in das Energiesystem eingebunden, oder unmittelbar vor Ort genutzt werden. Das „Important Project of Common European Interest“ (kurz IPCEI) „Clean Hydrogen Coastline“ soll dazu beitragen, die Wasserstoffwirtschaft in der Region Nordwest auf- und auszubauen.

News (04.05.2023): EWE und Salzgitter AG wollen beim Thema Wasserstoff kooperieren!

Am 04.05.2023 haben die Salzgitter AG und der Versorger EWE in Salzgitter eine Absichtserklärung unterzeichnet, die eine Kooperation der beiden Unternehmen beim Thema Wasserstoff vorsieht. So will EWE grünen Wasserstoff erzeugen und nach Salzgitter liefern, den die Salzgitter AG dann für die klimafreundliche Stahlerzeugung im Rahmen des Projekts SALCOS® einsetzt. Die Absichtserklärung wurde von den Vorstandsvorsitzenden Stefan Dohler (EWE) und GUnnar Groebler (Salzgitter AG) im Rahmen des Handesblatt Wasserstoff-Gipfels unterzeichnet.

Mit der Kooperation werden auch die beiden niedersächsischen Groß-Projekte Clean Hydrogen Coastline von EWE und SALCOS® von der Salzgitter AG stärker vernetzt, was auch der niedersächsische Ministerpräsident Stephan Weil begrüßt: „EWE und die Salzgitter AG wollen eng kooperieren in Sachen grüner Wasserstoff – das ist eine sehr gute Neuigkeit für das Energieland Niedersachsen. Diese Kooperation ist ein weiterer Meilenstein auf dem Weg zur Dekarbonisierung der Stahlproduktion. Ich freue mich, dass die EWE mit der Erzeugung und dem Transport von grünem Wasserstoff das Leuchtturmprojekt SALCOS® der Salzgitter AG entscheidend voranbringt.“

Mehr erfahren

Im IPCEI „Clean Hydrogen Coastline“ wollen die Industriepartner ArcelorMittal, EWE, Faun, Gasunie, swb und Tennet in der Region Nordwest 400 Megawatt Elektrolysekapazität bis zum Jahr 2026 aufbauen. Hierzu gibt es verschiedene Projekte, die bei der Umsetzung helfen sollen.

So soll zum Beispiel der durch Offshore-Strom erzeugte Wasserstoff u.a. für die klimaneutrale Stahlerzeugung am Stahlstandort Bremen eingesetzt werden. Bei Bedarf kann überschüssiger Wasserstoff durch die Anbindung an den Kavernenspeicher in Huntorf zwischengespeichert werden.

Durch die vielfältigen Anknüpfungspunkte von Clean Hydrogen Coastline, beispielsweise mit den niederländischen Partnern, aber auch mit Vorhaben in Hamburg und Nordrhein-Westfalen, bieten sich umfangreiche Potenziale für ein europäisches IPCEI. Damit können die Partner einen entscheidenden Schritt machen, um ein wichtiger Baustein einer zukünftigen europäischen Wasserstoffwirtschaft zu werden. Ziel des Projektes ist vor allem die Einbindung von Wasserstoff in bestehende Energieinfrastrukturen.

Partner

©ArcelorMittal
©EWE
©Tennet

ArcelorMittal ist ein internationaler Stahlproduzent mit einem Produktionsvolumen von sieben Millionen Tonnen Rohstahl (2019), der deutschlandweit rund 9.000 Angestellte beschäftigt.

Logo: © ArcelorMittal

 

Mit rund 9.100 Mitarbeiterinnen und Mitarbeitern ist die EWE AG eines der größten Versorgungsunternehmen Deutschlands, das sich im Bereich Wasserstoff auf entsprechende Infrastruktur fokussiert.

Logo: © EWE AG

TenneT TSO GmbH ist ein Übertragungsnetzbetreiber mit einer Netzlänge von 24.000 Kilometern und ca. 5.700 Beschäftigten.

Logo: © TenneT TSO GmbH

©Gasunie Deutschland
©SWB

Die Gasunie Deutschland GmbH & Co. KG ist als Fernleitungsnetzbetreiber für ein rund 4.300 Kilometer langes Fernleitungsnetz verantwortlich.

Logo: © Gasunie Deutschland

Die swb AG ist ein regionales Versorgungsunternehmen für Bremen und Bremerhaven mit rund 2.255 Beschäftigten.

Logo: © swb AG

Northern Green Crane

Northern Green Crane

PROJEKTE

Quelle: Hydrogenious LOHC Technologies

Bild: ©Hydrogenious LOHC Technologies GmbH

Northern Green Crane

Im Rahmen des Projekts Northern Green Crane soll die Wasserstofferzeugung in Schweden mit den Nachfragezentren in Mitteleuropa – u.a. Lingen im Emsland – verbunden werden. Hierzu soll in Schweden zunächst grüner Wasserstoff hergestellt werden, der anschließend mit Hilfe eines flüssigen organischen Trägermaterials (Liquid Organic Hydrogen Carrier, kurz: LOHC) transportfähig und lagerbar gemacht wird. Auf dem Seeweg wird das LOHC dann zunächst über Rotterdam und die Ems nach Lingen verschifft. Dort wird aus dem LOHC in einer geplanten Dehydrierungsanlage wiederum Wasserstoff freigesetzt und für die Industrie vor Ort nutzbar gemacht sowie in das lokale Wasserstoff-Pipelinenetz eingespeist.

News (10/2022): H2-Produktionsstandort von Spanien nach Schweden verlegt

Wie die Hydrogenious LOHC Technologies GmbH Anfang Oktober mitteilte, wird der Wasserstoffproduktionsstandort des „Green Crane“-Projektes von Spanien nach Schweden verlegt. Hierdurch erhält das Projekt den neuen Namen „Northern Green Crane“.  Da Spanien zunächst eigene nationale Bedarfe an grünem Wasserstoff decken wolle, muss der H2-Produktionsstandort des Projekts nach Schweden verlegt werden. Die Standorte für die Wasserstoffanlandung (wie Lingen) seien von der Veränderung jedoch nicht betroffen.

Um den Wasserstoffbedarf Deutschlands zu decken, muss laut der Nationalen Wasserstoffstrategie ein großer Teil des grünen Wasserstoffs importiert werden. Im Projekt Northern Green Crane soll genau dies im Großmaßstab geschehen. Der grüne Wasserstoff soll dabei in Schweden mittels Erneuerbarer Energien wie Wind- und Wasserkraft produziert und mit Hilfe der LOHC-Technologie transportfähig und lagerbar gemacht werden.

Der grüne Wasserstoff kann so auf dem Seeweg zunächst nach Rotterdam gebracht und per Binnenschiff nach Lingen transportiert werden. In Lingen will Hydrogenious eine Dehydrierungsanlage errichten, die Wasserstoff mit einer Kapazität von 12 Tonnen pro Tag aus dem LOHC freisetzen kann.  Der hierdurch gewonnene Wasserstoff wird anschließend für die Industrie vor Ort zur Verfügung gestellt oder im Rahmen der GET H2-Initiative in das lokale Wasserstoff-Pipelinenetz eingespeist.

Quelle: Hydrogenious LOHC Technologies

Das Projekt soll ab 2026 die Lieferung von grünem Wasserstoff in industriellem Maßstab ermöglichen. Durch die Nutzung der LNG-Infrastruktur sollen dann bis zu 8.000 Tonnen grüner Wasserstoff pro Jahr geliefert werden können.

Ziel von Northern Green Crane ist es, eine großvolumige europäische Wertschöpfungsketten für grünen Wasserstoff mit Hilfe von LOHC aufzubauen. Das Projekt wird daher vom Wirtschafts- und Klimaschutzministerium gefördert und wurde im Jahr 2021 auch als Wasserstoff-IPCEI (Important Projects of Common European Interest) vorausgewählt (bzw. dessen Vorgänger – siehe Info-Kasten unten).

Partner

Die Hydrogenious LOHC Technologies GmbH mit Sitz in Bayern wurde im Jahr 2013 gegründet und bietet mit der LOHC-Technologie Lösungen für den sicheren und effizienten Transport von Wasserstoff. 

Vopak ist ein niederländisches Unternehmen, das sich mit der Lagerung und Distribution von Öl, Gas und Chemieprodukten beschäftigt. Das Unternehmen will neue Wertschöpfungsketten der Wasserstoffwirtschaft erschließen und die Wasserstoff-Mobilität ausbauen.

Im Projekt GETH2 wird eine bundesweite Infrastruktur mit der Kopplung aller Sektoren entwickelt. Regionen, in denen ein hohes Angebot an Erneuerbaren vorliegt, sollen so mittels der nötigen Infrastruktur direkt mit der Wasserstoff-Erzeugung und -Abnahme verbunden werden. An dem Projekt sind 12 Partner beteiligt.

Get H2

Get H2

PROJEKTE

Das Projekt GET H2 will Wasserstoff flächendeckend zur Verfügung stellen. © GET H2

Get H2

Wasserstoff wird eine zentrale Rolle für die Erreichung der Klimaziele  einnehmen. Damit Wasserstoff flächendeckend zur Verfügung steht, wird im Projekt GET H2 eine bundesweite Infrastruktur mit der Kopplung aller Sektoren entwickelt. Regionen, in denen viel erneuerbarer Strom aus Wind- und Solarenergie erzeugt wird, sollen so mithilfe der nötigen Infrastruktur direkt mit der Wasserstoff-Erzeugung und -Abnahme verbunden werden. 

News (31.01.2023): RWE bestellt bei Linde zwei 100-Megawatt-Elektrolyse-Anlagen für GET H2 in Lingen

RWE hat zwei weitere 100 MW PEM-Elektrolyseure für das Projekt GETH2 geordert. Insgesamt soll bis 2026 eine Elektrolysekapazität von 300 MW in Lingen entstehen. Eine Förderentscheidung der EU für das IPCEI-Vorhaben steht weiterhin aus. Mehr..

Im Rahmen des Projekts „GET H2″ soll Wasserstoff flächendeckend zur Verfügung gestellt werden, indem die hierfür nötige Infrastruktur aufgebaut wird. Der grüne Wasserstoff soll hierzu zunächst mit erneuerbaren Energiequellen hergestellt und über die bestehende Gasinfrastruktur für Industrie, Transport und Wärme unmittelbar bereitgestellt werden. Darüber hinaus kann der Wasserstoff auch als Grundlage für die Erzeugung von E-Fuels dienen. Nicht genutzter Wasserstoff soll in unterirdischen Salzkavernen gespeichert und bei Bedarf, bspw. zur Rückverstromung in wind- und sonnenarmen Stunden, genutzt werden.

Die Umsetzung soll in mehreren Schritten bis 2030 erfolgen. Den Auftakt macht das Projekt „GET H2 Nukleus“. In dem Projekt soll ein rund 130 Kilometer langes Netz von Lingen nach Gelsenkirchen aufgebaut werden, welches die Erzeugung von grünem Wasserstoff im Nordwesten Niedersachsens mit den industriellen Abnehmern in Niedersachsen und NRW verbinden soll. Von der Produktion mittels Wasserelektrolyse im Norden bis zum Transport für industrielle Abnehmer in Niedersachsen und Nordrhein Westfalen soll hierdurch die erste öffentlich zugängliche Wasserstoffinfrastruktur aufgebaut werden.

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Partner

©bp

Der Fernleitungsnetzbetreiber GASCADE Gastransport GmbH transportiert jährlich rund 109 Mrd. m³ Erdgas über das eigene 2.900 km lange Leitungsnetz. In Zukunft soll das Netz ebenfalls zum Transport von Wasserstoff genutzt werden.

 Logo: © GASCADE Gastransport GmbH

Die BASF ist ein Chemiekonzern mit über 110.000 Beschäftigten. Aktuell entwickelt das Unternehmen mit der Methanpyrolyse ein Verfahren zur klimafreundlichen Produktion von Wasserstoff.

Logo:  © BASF SE

Die BP Europa SE ist ein internationaler Energiekonzern mit rund 10.500 Mitarbeiterinnen und Mitarbeitern. Im Bereich Kraftstoffe forscht der Konzern an klimafreundlichen Alternativen, die die fossilen Kraftstoffe ersetzen können.

Logo:  © BP Europa SE

RWE Generation SE ist Teil der RWE AG und für die Stromerzeugung verantwortlich. Im Bereich Wasserstoff engagiert sich das Unternehmen von der Erzeugung erneuerbarer Energien über die Produktion von Wasserstoff bis zu dessen Speicherung.

Logo: © RWE AG

Die Thyssengas GmbH ist ein Ferngasnetzbetreiber für Erdgas mit einem 4.400 km langen Transportnetz und forscht in unterschiedlichen Vorhaben zum Thema Wasserstoff und Wasserstoffinfrastruktur.

Logo: © Thyssengas GmbH

Evonik ist ein Unternehmen der Spezialchemie mit mehr als 33.000 Beschäftigten. Aktuell arbeitet der Konzern an einer innovativen Membran, um die Elektrolyse effizienter und somit wirtschaftlicher zu gestalten.

Logo: © Evonik Industries AG

Die Nowega GmbH ist ein Fernleitungsnetzbetreiber mit rund 1.500 km Gashochdruckleitung. Im Leitungsnetz kann in Zukunft  Wasserstoff an potentielle Abnehmer in Niedersachsen verteilt werden.

Logo: © Nowega GmbH

Die H2 Green Power & Logistics GmbH mit Standort in Münster beschäftigt sich u. a. mit dem Einkauf bzw. dem Import sowie dem Vertrieb von Wasserstoff.

Logo: © H2 Green Power & Logistics GmbH

©Salzgitter AG - Logo

Uniper ist ein internationaler Energiekonzern mit ca. 12.000 Beschäftigten, dessen Wasserstoff-Aktivitäten sich über die gesamte Wertschöpfungskette verteilen.

Logo: © Uniper SE

Der Energieversorger ENERTRAG beschäftigt europaweit 540 Mitarbeiterinnen und Mitarbeiter und erzeugt seit 2011 aus Windenergie grünen Wasserstoff.

Logo: © ENERTRAG

Der Stahl- und Technologiekonzern Salzgitter AG hat über 24.000 Beschäftigte und will in Zukunft mithilfe von Wasserstoff klimafreundlichen Stahl herstellen.

Logo: © Salzgitter AG

Die Open Grid Europe GmbH (OGE) ist ein europäischer Fernleitungsnetzbetreiber mit einem Leitungsnetz von ca. 12.000 km.

Logo: © Open Grid Europe GmbH 

TransHyDE

TransHyDE

PROJEKTE

TransHyDE – Aufbau einer Wasserstoff-Transport-Infrastruktur

Um den deutschen Bedarf an grünem Wasserstoff zu decken und die Energiewende umzusetzen, braucht es große Mengen Wasserstoff – von denen ein nicht unerheblicher Teil importiert werden muss. Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Wasserstoff-Leitprojekt TransHyDE will daher Transport-Möglichkeiten technologieoffen weiterentwickeln und zudem entsprechende Normen schaffen, um hierdurch den Aufbau der Wasserstoff-Infrastruktur zu ermöglichen und den Markthochlauf zu unterstützen.

Auf unserer Seite werden zahlreiche Projekte vorgestellt, in denen der Transport von Wasserstoff im Fokus steht. Dabei gibt es ganz unterschiedliche Herangehensweisen, sei es der Transport in Hochdruckbehältern, in bestehenden Gasleitungen oder mittels grünen Ammoniaks oder flüssigen organischen Trägerstoffen (liquid organic hydrogen carriers [LOHC]). Diese technologische Vielfalt soll im Rahmen des Wasserstoff-Leitprojekts TransHyDE weiter untersucht werden – denn in den genannten Handlungsfeldern gibt es weiterhin großen Forschungsbedarf. So gibt es derzeit insbesondere im Bereich der Normierung, also z.B. bei Standards oder Sicherheitsvorschriften keine einheitlichen Regelungen – was den Markthochlauf aktuell noch behindert. Damit die genannten Transporttechnologien schnell ins Energiesystem integriert werden können, braucht es demnach neue Standards, Normen und Zertifizierungen, denen sich ein eigenes Arbeitspaket im Rahmen von TransHyDE widmet. 

TransHyDE wird in verschiedenen Teilprojekten umgesetzt, in denen die unterschiedlichen Transportmöglichkeiten in der Praxis, aber auch aus Sicht der Forschung genauer in den Blick genommen werden.

Quelle: Projektträger Jülich im Auftrag des BMBF

Die Umsetzung erfolgt in Teilprojekten (für weitere Informationen bitte ausklappen):

„Mukran"

Am Mukran Port auf Rügen wird ein innovativer Hochdruck-Kugelspeicher für Wasserstoff entwickelt. Dieser soll dazu in der Lage sein, auf hoher See in der unmittelbaren Umgebung von Offshore-Wind- und Elektrolyseanlagen vom Projekt H2Mare eingesetzt zu werden. Dort wird mittels Windenergie grüner Wasserstoff erzeugt, der im Kugelspeicher zwischenzeitlich gespeichert werden soll.

„GET H2“

Damit Wasserstoff flächendeckend zur Verfügung steht, soll im Projekt GET H2 die Nutzung von ehemaligen Erdgasleitungen für den Transport von Wasserstoff erforscht werden. Aktuell fehlen zudem Normen und Überwachungsstandards bei der Umstellung von Erdgasleitungen, weshalb in GET H2 ein Testumfeld aufgebaut wird, in dem Material- und Sicherheitsfragen beantwortet werden können.

„Campfire“

Das Projekt Campfire soll das Potential von Ammoniak für den Wasserstoff-Transport untersuchen und dabei insbesondere die Rückgewinnung von Wasserstoff aus Ammoniak in den Blick nehmen. Ziel ist hierbei insbesondere, die Effizienz bei der Wiederauslösung des Wasserstoffs zu verbessern.

„Helgoland“

Im Projekt Helgoland wird eine Wasserstoff-Logistikkette über Land und über See aufgebaut. Via Pipeline soll der grüne Wasserstoff von der Offshore-Anlage des Leitprojekts H2Mare auf die Insel Helgoland gebracht werden und dort für einen weiteren Transport mit LOHC gebunden werden. Anschließend kann der gebundene Wasserstoff mit bestehender Infrastruktur ähnlich wie Öl verschifft werden und im Hamburger Hafen in einer Dehydrieranlage wiederum vom LOHC gelöst und nutzbar gemacht werden.

„Forschungsverbünde"

Insgesamt fünf Verbünde von Forschungseinrichtungen unterstützen die Projekte mit wissenschaftlichen Erkenntnissen. Dabei geht es z.B. um Material- und Komponentenforschung, Betriebssimulationen oder auch sicherheitsrelevante und ökologische Fragen. Der Wissensstand und aktuelle Handlungsempfehlungen werden in einer Roadmap festgehalten und allen Projektpartnern zur Verfügung gestellt.

Weitere Informationen

Aus Niedersachsen nehmen drei Unternehmen an dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekt teil. Hierzu zählt die ROSEN GmbH, die Salzgitter Mannesmann Forschung GmbH sowie die Inherent Solutions Consult GmbH & Co. KG

Mehr zu dem Projekt finden Sie hier.

Wilhelmshaven Green Energy Hub

Wilhelmshaven Green Energy Hub

PROJEKTE

Quelle: Tree Energy Solution

Wilhelmshaven Green Energy Hub

Der Import von grünem Wasserstoff über Wasserstoff-Terminals stellt eine entscheidende Voraussetzung für den Aufbau einer Wasserstoffwirtschaft in Deutschland dar. Die niedersächsische Küste mit ihrem Tiefwasserhafen in Wilhelmshaven bietet hierfür ideale Gegebenheiten. Die Tree Energy Solution (TES) hat sich daher dazu entschieden, ein Wasserstoff-Terminal in Wilhelmshaven zu errichten, das den Import von grünem Wasserstoff im Großmaßstab ermöglicht. Das geplante Terminal umfasst dabei sechs Schiffsliegeplätze und insgesamt zehn Tanks mit einer Speicherkapazität von 2.000.000 Kubikmeter. Laut Planungen können in Zukunft über das Terminal bis zu 250 TWh grüne Gase pro Jahr importiert und daraus mehr als 5 Millionen Tonnen Wasserstoff erzeugt werden – was einem Zehntel des gesamten jährlichen Primärenergiebedarfs in Deutschland entspricht.

News (28.11.2022): TES und EWE planen den Bau eines 500-MW-Elektrolyseurs

Wie TES und EWE Ende November mitteiliten soll im Rahmen des Projekts ein 500 MW-Elektrolyseur gebaut werden. Der Elektrolyseur soll ab 2028 in Betrieb gehen. Die Kapazität des Elektrolyseurs soll 500 Megawatt betragen, die mit einer weiteren geplanten Anlage auf eine Gesamtkapazität von 1 Gigawatt erweitert werden soll. 

Zur Deckung des Wasserstoffbedarfs wird Deutschland in Zukunft aus verschiedenen Ländern grünen Wasserstoff importieren müssen. Hierfür ist die entsprechende Infrastruktur nötig, welche die Anlandung, die Einspeicherung und den Transport in das Wasserstoffleitungsnetz ermöglicht. Genau dies ist im Projekt Wilhelmshaven Green Energy Hub vorgesehen, das von Tree Energy Solution (TES) umgesetzt wird.  In Wilhelmshaven sollen hierzu sechs Schiffsliegeplätze errichtet werden, die „Suezmax-kompatibel“ sind – sodass auch große Schiffe in Wilhelmshaven anlanden können („Suezmax“ beschreibt eine Schiffsgröße, die für die Durchfahrt durch den Suezkanal in beladenem Zustand zulässig ist).

TES will den grünen Wasserstoff dabei auch selbst herstellen – in Ländern mit einem sehr hohen Angebot an Wasser-, Wind oder Solarkraft. Die Erneuerbaren werden in den Erzeugerländern zur Elektrolyse genutzt, um zunächst grünen Wasserstoff herzustellen. Nach der Elektrolyse wird dem Wasserstoff Kohlenstoffdioxid hinzugefügt, um grünes CH4 (Methan) herzustellen, welches anschließend per Schiffsflotte nach Wilhelmshaven transportiert werden kann. Hier wird das CH4 wieder in Wasserstoff umgewandelt, das entstehende CO2 abgeschieden und in einem Kreislaufsystem wieder in die Erzeugerländer zur weiteren Verwendung zurückgeführt.

Quelle: Tree Energy Solution

Wilhelmshaven Green Energy Hub im Modell

Ab 2026 ist der Betriebsbeginn des Terminals geplant und damit der erste Import grüner Moleküle. In dieser Anfangsphase werden voraussichtlich 25 TWh grünes Methan pro Jahr importiert – hieraus kann mehr als eine halbe Million Tonnen Wasserstoff erzeugt werden. Während der Hochlaufphase ab dem Jahr 2030 wird die Leistung sukzessive gesteigert, sodass schließlich bis zu 250 TWh pro Jahr – und damit mehr als 5 Millionen Tonnen Wasserstoff – importiert bzw. erzeugt werden kann.

Das Projekt will dabei die guten Standortbedingungen in Wilhelmshaven nutzen und auf die Speicher- und Transportinfrastruktur zurückgreifen, die aktuell in Niedersachsen aufgebaut wird. So soll eine Anknüpfung an die unterirdischen Salzkavernen-Speicher in Etzel hergestellt werden und die im Rahmen des Projekts H2ercules errichteten und umgewidmeten Leitungen genutzt werden, die den Transport in den Westen und Süden Deutschlands zu den industriellen Abnehmern ermöglichen. Durch die hohen Importvolumen von bis zu 250 TWh soll das Projekt zur Versorgungssicherheit in Deutschland und der EU beitragen.

Mehr zu dem Projekt

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Über TES

Tree Energy Solutions (TES) ist ein Unternehmen für grünen Wasserstoff, das Industrie und Verbraucher mit CO2-neutraler Energie versorgt – in Form von grünem Wasserstoff, grünem Gas und grünem Strom. Um ein Netz mit globaler Reichweite aufzubauen, entwickelt TES derzeit in Deutschland, Belgien, Frankreich, den Niederlanden und den Vereinigten Staaten Standorte für den Import und die Verteilung von Energie.