PROJEKTE

Credit DBT Inga HaarQuelle: NWN/Rainer Jensen
Das Projekt „AEMStack“soll die jeweiligen Vorteile der alkalischen und der PEM-Elektrolyse vereinen. 

Dank dieses Projektes haben wir bereits viele Erkenntnisse erhalten. Wir haben über 100 verschiedene Materialkombinationen getestet und damit eine gute Ausgangsposition erhalten zu der Frage, wie sich bestimmte Membranen im Zusammenspiel mit dem Katalysatoren und den Bipolarplatten verhalten.

Dr. Thorsten Hickmann

Geschäftsführer, Whitecell Eisenhuth GmbH & Co. KG

AEMStack – Effiziente und kostengünstige Elektrolyse

Eine der wichtigsten Voraussetzungen für den erfolgreichen Hochlauf der Wasserstoffwirtschaft liegt in der kostengünstigen Produktion von grünem Wasserstoff per Elektrolyse. Derzeit gibt es mit der alkalischen und der Proton Exchange Membrane-Elektrolyse (PEM-Elektrolyse) insbesondere zwei Elektrolyse-Verfahren, die je nach Anwendungsgebiet zum Einsatz kommen. Beide Verfahren haben dabei Vorteile, aber auch Nachteile – weshalb das vom Land Niedersachsen geförderte Forschungsprojekt „AEMStack“ die Vorteile beider Verfahren vereinen und dadurch die kostengünstige Elektrolyse ermöglichen will.  

Derzeit finden insbesondere zwei Verfahren zur Elektrolyse Anwendung: die alkalische und die PEM-Elektrolyse. Beide Verfahren haben gewisse Vorteile, aber auch Nachteile, weshalb es bei der Wahl des „passenden“ Elektrolyse-Verfahrens auf den individuellen Anwendungsfall ankommt. Um die Grundunterschiede der Verfahren darzustellen und die Problemstellung aufzuzeigen, werden in den beiden folgenden Ausklappern die beiden Verfahren und ihre jeweiligen Eigenschaften näher vorgestellt.

Alkalische Elektrolyse

Die alkalische Elektrolyse verwendet eine flüssige Kalilauge als Elektrolyt. Ein Vorteil dieses Ansatzes besteht darin, dass kostengünstige Nickel- und Kobaltverbindungen als Katalysatoren verwendet werden können. Die Herstellung und Wartung solcher Elektrolyseure sind vergleichsweise einfach. Allerdings erfordert dieses Verfahren eine umfangreiche Anlagenperipherie und die Notwendigkeit, den produzierten Wasserstoff von Laugenbestandteilen zu reinigen. Zudem müssen Regel- und Messkomponenten speziell auf den Betrieb mit konzentrierter Lauge ausgelegt sein, was die Flexibilität bei schwankenden Lastzuständen einschränken kann.

PEM-Elektrolyse

Die PEM-Elektrolyse verwendet eine protonenleitende Membran als Festelektrolyt. Dies ermöglicht eine äußerst schnelle Reaktionszeit, da Schwankungen im Elektrolysestrom innerhalb von Millisekunden gefolgt werden können. Dadurch sind höhere Stromdichten möglich – zudem ist die Bauweise der PEM-Elektrolyseure im Vergleich zur alkalischen Elektrolyse kompakter. Allerdings sind die Investitionskosten für PEM-Elektrolyseure hoch, da sie korrosionsstabile Zellkomponenten und teure Edelmetallkatalysatoren wie Platin und Iridium erfordern.

Die Wahl zwischen alkalischer und PEM-Elektrolyse hängt daher stark von den spezifischen Anforderungen und Betriebsbedingungen ab. Während die alkalische Elektrolyse günstiger umzusetzen ist, ist die PEM-Elektrolyse bei schwankenden Lastzuständen flexibler. Um die Elektrolyse flexibel, aber dennoch kostengünstig zu gestalten, sollen in dem Vorhaben „AEMStack“ beide Technologien kombiniert werden, um so die jeweiligen Vorteile der Elektrolyse-Verfahren zu vereinen.

Der vorgesehene Elektrolyse-Stack weist sich dabei durch neue Materialkombinationen der Einzelkomponenten aus und soll eine deutliche Kostensenkung bringen – durch den Einsatz der sogenannten Anionen-Austauscher-Membran-Elektrolyse (AEMEL). Bei dieser Technologie werden die Vorteile der alkalischen Elektrolyse, also insbesondere der Einsatz von (kostengünstigen) edelmetallfreien Katalysatoren, mit den Eigenschaften eines PEM-Elektrolyseures – wie z.B. hohe Strom- und Leistungsdichten, Druckbetrieb oder dynamische Lastwechsel – kombiniert.

Quelle: AdobeStock_192820721

Der effizienten Elektrolyse kommt beim Aufbau der Wasserstoffwirtschaft eine wichtige Rolle zu.

Umsetzung erfolgt in 7 Teilzielen

Dieses Gesamtziel soll durch die Umsetzung von 7 Teilzielen gelingen. Diese umfassen die folgenden Schritte:

  1. Arbeitsziel: Entwicklung von Bipolarplatten, die sich durch Langzeitstabilität und eine geringe Korrosion bei guten elektrischen Kontakteigenschaften ausweisen.
  2. Arbeitsziel: Entwicklung der porösen Transportschicht (PTL), die den Stofftransport und die elektrische Leitfähigkeit erleichtert.
  3. Arbeitsziel: Reproduzierbare Herstellung von Membran-Elektroden-Einheiten. Diese müssen sich durch eine hohe Leistungsdichte ausweisen, langzeitstabil sein und mit kommerziell erhältlichen Materialien produzierbar sein.
  4. Arbeitsziel: Aufbau einer Testumgebung für Einzelzellentests
  5. Arbeitsziel: Durchführung von Einzelzellentests zur Beurteilung der elektrochemischen Leistungsfähigkeit und der einzelnen Beiträge zu den Überspannungen
  6. Arbeitsziel: Strukturelle Charakterisierung der Einzelkomponenten vor und nach den Tests. Hierdurch soll die Degradation von Komponenten aufgedeckt werden.
  7. Arbeitsziel: Bau und Test des Stacks.

Projektpartner:

Das Projekt wird vom Deutschen Zentrum für Luft- und Raumfahrt und der Whitecell Eisenhuth GmbH & Co. KG durchgeführt und vom Land Niedersachsen mit etwa 977.000 € gefördert.

Bleiben Sie informiert – mit unserem Newsletter „NWN direkt…“

Sie möchten über diese und andere spannende Wasserstoff-Projekte aus Niedersachsen informiert bleiben? Dann melden Sie sich bei unserem Newsletter an!