TransHyDE - Development of a hydrogen transport infrastructure

To meet Germany's demand for green hydrogen and implement the energy transition, large quantities of hydrogen are needed - a not inconsiderable proportion of which must be imported. The hydrogen lead project TransHyDE, which is funded by the German Federal Ministry of Education and Research (BMBF), therefore aims to further develop transport options in a way that is open to technology and also to create appropriate standards in order to thereby enable the development of the hydrogen infrastructure and support the market ramp-up.

Our site presents numerous projects that focus on the transport of hydrogen. There are very different approaches, be it transport in high-pressure containers, in existing gas pipelines or by means of green ammonia or liquid organic hydrogen carriers (LOHC). This technological diversity is to be further investigated as part of the TransHyDE hydrogen lead project - because there is still a great need for research in the fields of action mentioned. In particular, there are currently no uniform regulations in the area of standardization, e.g. standards or safety regulations - which is currently still hindering the market ramp-up. New standards, norms and certifications are therefore needed so that the above-mentioned transport technologies can be quickly integrated into the energy system, and a separate work package within TransHyDE is dedicated to this.

TransHyDE is being implemented in various sub-projects, in which the various transport options are being looked at in more detail, both in practice and from a research perspective.

Source: Project Management Jülich on behalf of the BMBF

The implementation takes place in subprojects (please fold out for further information):


An innovative high-pressure spherical hydrogen storage system is being developed at Mukran Port on the island of Rügen. This should be able to be used on the high seas in the immediate vicinity of offshore wind and electrolysis plants from the H2Mare project. There, green hydrogen is generated by means of wind energy, which is to be stored temporarily in the spherical storage system.

"GET H2"

To ensure that hydrogen is available nationwide, the GET H2 project is investigating the use of former natural gas pipelines for hydrogen transport. Currently, there is a lack of norms and monitoring standards for the conversion of natural gas pipelines, which is why GET H2 is establishing a test environment in which material and safety questions can be answered.


The Campfire project will investigate the potential of ammonia for hydrogen transport, focusing in particular on the recovery of hydrogen from ammonia. The aim here is in particular to improve the efficiency with which the hydrogen is re-released.


In the Helgoland project, a hydrogen logistics chain is being established over land and sea. Via pipeline, the green hydrogen will be brought from the offshore plant of the lead project H2Mare to the island of Helgoland, where it will be bonded with LOHC for further transport. Subsequently, the bonded hydrogen can be shipped using existing infrastructure in a similar way to oil and, in turn, dissolved from the LOHC and made usable in a dehydrogenation plant in the port of Hamburg.

"Research Alliances"

A total of five alliances of research institutions support the projects with scientific findings. This involves, for example, materials and component research, operating simulations, or safety-related and ecological issues. The state of knowledge and current recommendations for action are recorded in a roadmap and made available to all project partners.

Further information

Three companies from Lower Saxony are participating in the project, which is funded by the German Federal Ministry of Education and Research (BMBF). These include ROSEN GmbH, Salzgitter Mannesmann Forschung GmbH and Inherent Solutions Consult GmbH & Co. KG

More about the project you can find here.