Im Gespräch mit Boris Richter

Im Gespräch mit Boris Richter

©STORAG ETZEL

Beim Projekt H2Cast in Etzel, Niedersachsen, wird die Speicherung von Wasserstoff in Salzkavernen getestet, die zuvor für Erdgas genutzt wurden. 

Der Schlüssel für Versorgungssicherheit: Energiespeicher

Fast täglich berichteten die Medien vergangenen Winter von den Füllständen deutscher Gasspeicher. Erstmals kam das Thema Speicher und ihre Bedeutung ins Bewusstsein der Bevölkerung. Insbesondere Für die Energiewende sind Speicher von enormer Bedeutung. Allein im Jahr 2021 wurden 5,8 TWh Erneuerbare Energien abgeregelt, um das Netz nicht zu überlasten. Das entspricht dem jährlichen Stromverbrauch von mehr als 1,5 Mio. Haushalten.

Im Gegensatz zu Strom kann Wasserstoff kostengünstig und vor allem langfristig gespeichert werden. Speicher spielen für die künftige Energieversorgung deshalb eine wichtige Rolle. Darüber sprachen wir für diese Ausgabe zum Thema Speicher mit Boris Richter, Geschäftsführer der STORAG ETZEL GmbH, dem größten unabhängigen Betreiber von Kavernenspeichern in Deutschland.

NWN: Aktuell speichern wir in Deutschland große Mengen Gas in unterirdischen Kavernen für den Winter. Künftig wollen wir weg vom Erdgas bzw. LNG und möglichst viele Prozesse elektrifizieren. Brauchen wir die Kavernenspeicher dann noch in ihrem aktuellen Umfang?

Boris Richter: Die Kavernen haben die Aufgabe Energie, z.B. in Form von Gas zu speichern. Genau dann, wenn Energie in großen Mengen, z.B. im Winter aus dem Fernleitungsnetz entnommen werden, unterstützen die Speicher und decken die Bedarfsspitzen durch Ausspeichern von Gas zusätzlich ab. Die Speicher haben eine Pufferfunktion. Ein Import von Energie, z.B. über den Seeweg per LNG-Tanker erfolgt ja auch diskontinuierlich, also punktuell über eine kurze Zeit. Damit sind Kavernenspeicher zusätzlich gefordert und müssen ihre Funktion erfüllen.

Aus dem erneuerbaren Strom von der Nordsee will man künftig Wasserstoff herstellen, der dann z.B. in Etzel gespeichert werden kann. Warum speichern wir den erneuerbaren Strom nicht direkt in großen Batterien und speisen den Strom später ins Netz, wenn wir ihr benötigen?

BR: Rein vom Wirkungsgrad macht es absolut Sinn, die Elektronen direkt zu speichern. Allerdings sind Akkumulatoren derzeit viel zu klein in ihrer Kapazität. Eine Gaskaverne mit Methanmolekülen kann eine Terrawattstunde Energie speichern. Damit kann eine kleine Stadt problemlos mit Energie für ein ganzes Jahr versorgt werden. In Etzel sind aktuell 51 Gaskavernen in Betrieb.

 

Wasserstoff lässt sich auch überirdisch in mobilen Tanks speichern. Wo ist der Vorteil der unterirdischen Speicherung?

BR: Das Volumen einer Kaverne ist sehr viel größer als ein gewöhnlicher Tank. Im Schnitt sind die Kavernen in Etzel zwischen 300.000 m³ und 600.000 m³ groß. Das Gasmedium kann mit bis zu 200 bar komprimiert und somit viele Millionen Kubikmeter Gas in eine Kaverne gespeichert werden. Man würde viele hunderte Tanks an der Oberfläche und damit enorm viel Fläche benötigen.

 

Künftig wollen Sie in Etzel auch Wasserstoff speichern. Im Projekt H2Cast rüstet Storag Etzel bereits eine Kaverne dafür um. Wo stehen Sie aktuell bei dem Projekt?

BR: Aktuell haben wir einen Dichtheitstest mit Wasserstoff positiv abgeschlossen und werden im Herbst weitere Erprobungen durchführen. Es werden weitere Bauarbeiten über- und untertage durchgeführt.

„Wir wollen den niedersächsischen Standort Etzel „H2-ready“ machen, d.h. vorbereiten auf den absehbaren Hochlauf der Wasserstoffwirtschaft, der helfen wird, die deutsche Industrie zu dekarbonisieren, sprich CO2-freier und klimafreundlicher zu gestalten. Auf diese Weise wird die Versorgungssicherheit mit CO2-freier Energie in Zukunft gewährleistet. Der Standort ist dabei für Nordwesteuropa von entscheidender Bedeutung. Die Energiewende braucht ab spätestens dem Jahr 2030 diese Großspeicher, da H2-Angebot und -Nachfrage zeitlich und räumlich auseinanderliegen werden. Den Standort zukunftsfähig für nachfolgende Generationen aufzustellen, das ist unser Ziel!“

Boris Richter

Kaufmännischer Geschäftsführer, Storag Etzel

Der Großteil der deutschen Vorhaben für Wasserstoffspeicherung liegt in Niedersachsen. Warum gibt es insbesondere hier so viele Speicher?

BR: Kavernen sind bergmännisch angelegte, also künstliche Hohlräume in Salzformationen. Man benötigt demzufolge neben der Technologie auch einen Lagerstättenkörper aus Salz. Gewöhnlicherweise sind dies Salzstöcke oder Salzkissen. Diese Salze sind vor ca. 270 Millionen Jahre im Erdzeitalter des Perms entstanden. Ein Meer ist in mehreren Schritten ausgetrocknet und Restbestandteile des Meeres, weitestgehend das Salz, hat sich abgelagert. Das damalige Meer entstand aufgrund einer Beckenstruktur, eben im norddeutschen Becken. Damit haben wir den örtlichen Bezug auch gleich hergestellt. Denn ca. 70 Prozent der Salzvorkommen an Land liegen bezogen auf Deutschland in Norddeutschland und weitestgehend in Niedersachsen. Deshalb gibt es hier in Niedersachsen viele Kavernenspeicher, weil eben viel Salz unter unseren Füßen vorhanden ist.

 

Was sind die größten Herausforderungen bei der unterirdischen Speicherung von Wasserstoff?

BR: Wir müssen viele technische, aber auch genehmigungsrechtlichen Fragen beantworten. An aller erster Stelle stehen die Sicherheit und der Schutz der Bevölkerung, unserer Mitarbeiter und unserer Anlage im Vordergrund. Da wir ein Bergbaubetrieb sind, unterliegen wir dem Bergrecht und unsere Genehmigungsbehörde ist das LBEG in Clausthal-Zellerfeld. Das Bergamt ist unsere Aufsichtsbehörde und prüft sehr gewissenhaft unsere Anträge.

 

Über H2Global soll Ende 2024 erstmals grüner Wasserstoff nach Deutschland importiert werden. In den kommenden Jahren gehen die ersten Großelektrolyseure ans Netz. In Niedersachsen werden bald große Menge Wasserstoff entstehen und anlanden. Bis wann brauchen wir funktionsfähige Wasserstoffspeicher?

BR: Wir gehen davon aus, dass ab 2027/2028 Wasserstoffspeicher benötigt werden und der Markthochlauf für Wasserstoff erfolgt. Dies bedeutet aber auch, dass die Kavernenspeicher auch entsprechend mit Wasserstoffleitungen angeschlossen sind. Die Infrastruktur dafür muss aufgebaut sein, sonst funktionieren Speicher nicht. Die Leitungen sind sowas wie Lebensadern, in denen die Energie transportiert wird.

 

In unserem künftigen Energiesystem aus Erneuerbaren Energien müssen wir große Mengen Wasserstoff einspeichern, um Versorgungssicherheit gewährleisten zu können. Angenommen wir rüsten alle bestehenden Kavernenspeicher um – reichten die aktuellen Kapazitäten für den künftigen Speicherbedarf überhaupt aus?

BR: Wenn für die Industrie komplett Erdgas durch Wasserstoff ersetz werden soll und wir davon ausgehen, dass dies über Dekaden erfolgt, dann wird der derzeitige Speicherhohlraum nicht ausreichen. Denn betrachtet man das energetisch, so hat Wasserstoff fast viermal weniger Energie als Erdgas. Bedeutet also, um dieselbe Energie zu speichern, bedarf es viermal mehr Speichervolumen. Man bedenke auch, dass neben dem Wasserstoffspeicherbedarf auch noch der Speicherhohlraum, wenn auch abnehmend für Erdgas bereitgestellt werden muss.

 

Über welche Größenordnung sprechen wir beim künftigen Speicherbedarf?

BR: Aktuelle Studien sehen den Speicherbedarf für Wasserstoff im Jahr 2050 bei 74 Terrawattstunden.

 

Wie lange wird es dauern, entsprechende Kapazitäten aufzubauen?

BR: In Etzel benötigen wir ca. zwei bis vier Jahre, um bestehende Kavernen für die Wasserstoffspeicherung umzurüsten und etwas länger, um an 24 neu geplanten Lokationen neue Wasserstoffkavernen im Salzstock zu errichten. Die bergrechtlichen Genehmigungen, um neue Kavernen zu bauen haben wir bereits. Den Nachweis, dass Wasserstoff problemlos in Kavernen gespeichert werden kann, erbringen wir die kommenden Jahre mit unseren Partnern im H2CAST Forschungsprojekt. Das Projekt ist durch das Land Niedersachsen und den Bund gefördert.

 

Vielen Dank, Herr Richter. 

CHESS - Development of a hydrogen infrastructure in the Wesermarsch region

As part of the CHESS (Compressed Hydrogen Energy Storage Solution) project in Huntorf (Wesermarsch district), EWE and Uniper want to jointly convert their respective existing gas and electricity infrastructures. The aim is to build a new hydrogen infrastructure on site quickly, efficiently and cost-effectively.

Green Wilhelmshaven

In the Green Wilhelmshaven project, the import of hydrogen by means of ammonia is made possible on a large scale; at the same time, however, green hydrogen is also produced on site by electrolysis. This will build capacities that together could cover 10-20% of the hydrogen demand of all of Germany in 2030.

Endless Energy Centre Schaumburg

In Bückeburg, the largest, and so far the only completely self-sufficient office building in Germany is being built on three floors with around 1000m².

Energiemodul der Zukunft

Für eine erfolgreiche Transformation und Energiewende braucht es qualifizierte Fachkräfte – sei es in der Planung, im Handwerk oder in der Industrie. Im Rahmen des Projekts „Energiemodul der Zukunft“ (EmZ) will das Technologiezentrum Nordenham daher jungen Menschen aufzeigen, welche Anforderungen im Bereich der Erneuerbaren Energiesysteme bestehen und exemplarisch darstellen, wie die Energieversorgung des Technologiezentrums auf Erneuerbare umgestellt werden kann. Hierzu soll auch Wasserstoff zum Einsatz kommen, wofür das Projekt vom Land Niedersachsen gefördert wird.

Im Gespräch mit Boris Richter

Das NWN im Gespräch mit Boris Richter, Geschäftsführer von Storag Etzel, zur Bedeutung von Wasserstoff-Speichern für die Energiewende.

Hydrogen storage in Etzel

In Etzel, experts in the H2CAST joint project are investigating whether the local salt domes are suitable for storing large quantities of hydrogen.

Hydrogen drying by absorption

Bilfinger is currently developing a demonstration plant for hydrogen drying in Cloppenburg. Drying is necessary in order to be able to convert the hydrogen back into electricity after storage (e.g. in caverns) or to feed it into the grid.

Hydrogen Cavern for Mobility

In the HyCAVmobil (Hydrogen Cavern for Mobility) project, EWE and its partners are researching the conditions under which pure hydrogen can be stored in salt caverns.

Clean Hydrogen Coastline

As part of the Clean Hydrogen Coastline project, industry partners in the Northwest region plan to build 400 megawatts of electrolysis capacity by 2026.

Northern Green Crane

The Northern Green Crane project will link hydrogen production in Sweden with demand centers in Central Europe - including Lingen in the Emsland region.

In conversation with Lars Eichhorn

In conversation with Lars Eichhorn

Credit DBT Inga HaarQuelle: LUH

©Technology Salon, Leibniz University

Innovation Lab "Sustainable Hydrogen Combustion Concepts" (WaVe)

More than 20 research teams in Lower Saxony are working on solutions for the hydrogen economy. Many of them within the framework of the five innovation labs coordinated by the EFZN.

A contribution to the stronger networking of science and industry was the presentation of the EFZN hydrogen competence paper. The paper is a "performance showcase" of the Hydrogen Lower Saxony Research Alliance, which has been in existence since 2018.

The NWN took the publication as an opportunity to talk to Lars Eichhorn, research associate at the Institute for Technical Combustion and researcher in the WaVe innovation laboratory.

Mr. Eichhorn, you work in one of the five innovation labs in Lower Saxony. What does the WaVe deal with?

Eichhorn: The Innovation Lab is working on sustainable hydrogen combustion concepts (WaVe) in three projects. One project is concerned with hydrogen engines in vehicles. It is investigating which concepts and adapted components can be used to run existing commercial vehicle engines on hydrogen. The second project is investigating how natural gas can be replaced by hydrogen in a gas-fired power plant. In the third project, on which I am personally working, we want to show that hydrogen can be used to provide primary control power in gas and steam power plants. The short-term power increase of a steam turbine required for this is generated with additional process steam, which is the reaction product of hydrogen-oxygen combustion.

Why can't such processes be electrified?

Eichhorn: In this and many other applications, temperature levels beyond 500 degrees Celsius are required. Especially in the production of ceramics, glass, or cement, the heat demand is very high. Here, thermal utilization is significantly more efficient than electrical utilization of hydrogen.

They are trying to make this combustion even more efficient here. How does that work?

Eichhorn: The handling of the very hot hydrogen-oxygen flame, which burns at atmospheric pressure and temperatures above 3000 °C, is particularly demanding. For this purpose, we are developing a burner that can withstand the thermal load and ensure optimum mixing of the gases as well as reliable stabilization of the flame. The focus is on reducing the combustion temperature to a technologically controllable level.

And you do that with water?

Eichhorn: Correct. In many cases, water vapor is used for this, which is added to the combustion; what is challenging is the quantities required. In our research approach, the flame is cooled with liquid water, which is atomized by the oxygen and enters the combustion chamber as a water-oxygen spray. Within the combustion chamber, the mixing and oxidation of the hydrogen takes place. In initial tests with the new burner, the flame temperature was reduced to below 2000 °C thanks to the innovative concept. Other advantages of using liquid water are the smaller pipe cross-sections in the supply line compared with vaporized water and the fact that no primary energy is required to produce steam. This makes this technology much more flexible and quicker to use.

But steam can already be produced relatively quickly. Where do we need this time flexibility?  

Eichhorn: The aim of primary control power is to provide additional power within seconds to ensure the stability of the power grid. Starting up a steam generator takes too long and is therefore not suitable. Instead, our research approach uses liquid water - without further preparation.

You also work in a basic research laboratory at the Hydrogen Campus Hannover. What is being studied here?

Eichhorn: The basic laboratory was primarily created to arouse students' interest in hydrogen in general and in sustainable combustion technology topics in particular. And indeed, although we are experiencing declining attendance at lectures on combustion engines, we are seeing increasing interest on the part of students in hydrogen technologies and alternative fuels. Especially through the lab, we receive some unsolicited applications for our innovative research projects.

Thank you very much, Mr. Eichhorn.

 

 

 

 

In conversation with Tobias Moldenhauer from EWE

In conversation with Tobias Moldenhauer from EWE

Credit DBT Inga HaarSource: private

Tobias Moldenhauer, Head of Hydrogen in the Hydrogen and Large-scale Storage business area at EWE AG in Oldenburg.

"What it needs now is a hydrogen acceleration bill".

TES-H2 and EWE are planning to build a 500 MW electrolyzer at the Wilhelmshaven Green Energy Hub. With this, the two companies are taking another important step for the energy transition.

The electrolyzer is scheduled to come on stream from 2028. The capacity will initially be 500 megawatts, and will later be expanded to a total capacity of 1 gigawatt with another planned plant. The signing of a memorandum of understanding between the two companies is in line with Germany's energy strategy to extract clean energy from the North Sea and expand supplies for hydrogen production. More info on the project can be found here.

Lis Blume from the NWN took this cooperation as an opportunity to talk to Tobias Moldenhauer, Head of Hydrogen in the Hydrogen and Large Storage Business Unit of EWE AG.

 

Tobias, together with TES-H2, EWE is building a 500 MW electrolyzer in Wilhelmshaven. In a second step, the capacity is then to be expanded to 1 GW. Can you briefly describe the significance of this project for the energy transition in Lower Saxony and Germany? 

We are firmly convinced that the energy transition and the associated shift away from fossil fuels will succeed with green hydrogen. In this way, we are creating a way to make renewable energies storable. Green hydrogen will thus become an important component of the energy future in the region where the best conditions exist for the center of a green, European hydrogen economy: northwest Germany. Here in the region, the share of renewable energies is high and there are numerous infrastructure components, such as gas storage facilities and one of the largest gas distribution networks in Germany. All the measures and projects build on each other and have a common goal: to drive the market ramp-up of the hydrogen economy. We want to tackle and drive this forward together with partners like TES. To this end, we recently sealed a joint declaration of intent.

This is not your first project in the hydrogen economy. What "learnings" from the other projects can you apply here?

We are still at the beginning of numerous hydrogen projects along the entire value chain, from generation, transport and storage to application in industry and heavy-duty transport. We are cooperating with other companies and jointly developing ideas and projects to drive the ramp-up of the hydrogen economy. We already have a hydrogen production demonstrator in operation and a hydrogen filling station, and others are currently being implemented. Of course, we are also taking the findings from this into the development of large-scale projects. We are also already creating facts in hydrogen storage. We are currently building a test cavern in Rüdersdorf, Brandenburg, and together with DLR are testing the storage and retrieval of hydrogen in an underground cavity and the quality of the hydrogen after it has been removed from the cavern. We already reached an important milestone a few weeks ago: The 1,000-meter supply line to the cavern has been proven to be leak-proof.

For other hydrogen projects, such as Clean Hydrogen Coastline or Hyways for Future, EWE has submitted funding applications to the state and federal governments. Not this time. Why?

In order to be able to submit a funding application, concrete preliminary project planning is first necessary. With the signing of the Memorandum of Understanding between EWE and TES-H2, i.e. a joint declaration of intent, we are only now entering into this preliminary planning. As things stand, we will therefore also be dependent on subsidies for this electrolysis project.

The new government of Lower Saxony is talking about Germany's speed and energy transition turbo for such projects. Has the turbo already arrived in practice?

We very much hope that approval processes will become leaner for energy transition projects. With the new LNG Acceleration Act, Germany has shown that this is possible. What is needed now is an appropriate legal framework for the swift implementation of all energy transition projects, for example through a hydrogen acceleration law.

You want to get the green electricity for electrolysis from the wind farms in the North Sea. Will offshore wind be developed to the point where sufficient energy is available for electrolysis by 2028?

The expansion of renewables - whether onshore or offshore wind energy - naturally goes hand in hand with the expansion of the hydrogen economy. We therefore assume that by the time our planned electrolyzer in Wilhelmshaven goes into operation in 2028, the expansion of wind energy will have progressed accordingly, so that we do not fear any bottleneck in the procurement of green electricity for hydrogen production. We are of course in close consultation with the grid operators on this.

Thank you very much.

 

 

In conversation with Stefan Kaufmann

In conversation with Stefan Kaufmann

In conversation with Dr. Stefan Kaufmann

Credit DBT Inga HaarSource: NWN

Lis Blume (NWN) and Dr. Stefan Kaufmann in conversation. ©NWN

Energy infrastructure of tomorrow

For the successful development of a hydrogen economy, an international hydrogen infrastructure is needed. Lis Blume from the NWN talks with Dr. Stefan Kaufmann, the former federal representative for hydrogen, about Lower Saxony's role in the transformation of the energy sector, regulation and certificates for green hydrogen, EU policy and international partnerships.

Watch directly here or on our Youtube channel.

 

Imprint

.

Privacy policy

Interview: No energy transition without skilled workers

Interview: No energy transition without skilled workers

In conversation with Dr. Ruggero Capperucci

Source: NWN

Lis Blume (NWN) and Dr. Ruggero Capperucci (University of Oldenburg) during an interview in Oldenburg. ©NWN

We cannot achieve an energy turnaround without skilled workers

The successful development of a hydrogen economy requires comprehensive education and training in many sectors. This is because the conversion to hydrogen technologies is accompanied by numerous changes in production processes, in energy or even in vehicle use. The NWN therefore now summarizes current qualification offers and provides an overview of the most important offers in Lower Saxony.

Lis Blume, responsible for communications at the NWN, therefore talked to Dr. Ruggero Capperucci, contact person for the advanced training course "Hydrogen for Experts and Managers" at the Carl von Ossietzky University Oldenburg, Leibniz University Hannover and Fraunhofer Institute for Wind Energy Systems IWES.

"By 2030, we will need 70,000 hydrogen specialists in Germany."

 

 

Mr. Capperucci, are our skilled workers well prepared for the energy transition?

RC: Dear Ms. Blume, I'm afraid I have to give you a clear answer: No. There is currently a serious shortage of hydrogen specialists in Germany. An estimate by the German Hydrogen and Fuel Cell Association (DWV) suggests that 70,000 new hydrogen cycle specialists will need to be trained by 2030 - and that's before recent international events have given a decisive boost to energy independence and the green turnaround at national and EU level.

 

Hydrogen as an important building block in the energy supply has been a topic every now and then in the past decades, starting in the eighties. The topic itself is not new - but why is there still a lack of expertise in dealing with the gas?

RC: Green hydrogen will develop its market potential in various sectors over the next ten years. The technology for using hydrogen for energy purposes has been well known for decades. Nevertheless, its large-scale application requires a rethink and adaptation of the entire economic and industrial system at various levels. The energy turnaround with hydrogen as the central "bridge" for coupling different sectors entails a multitude of technological, but also legal, economic, operational challenges. Last but not least, politics and administration are also called upon to initiate and accompany the conversion.

 

Waste_heat_pipes_cut_fotolia_©Aleksey-Stemmer

©Aleksey-Stemmer

 

"Building a hydrogen economy will require skilled professionals and leaders in all areas along the value chains, as well as in politics and government."

 

 

We always talk about the skilled workers and those responsible in the companies. You're now also bringing administration into play - what role does it play in building the hydrogen economy?

RC: There is currently a strong political will for the transformation of the industry and numerous investments in model projects. For the development of a hydrogen economy, competent specialists and managers are needed in all areas along the value chains, as well as in politics and administration. In addition, hydrogen economy projects are complex, interdisciplinary and innovative. A dedicated training program can shorten the learning curve and reduce the cost of mistakes.

Can you be more specific about that?

RC: Let me give you a few examples: For the use of hydrogen vehicles in the vehicle fleet, dedicated logistics must also be provided the decision for a system sets a company for years and entails numerous follow-up decisions. Employees of banks or insurance companies must be able to assess the technical dimensions of a hydrogen project in order to evaluate its feasibility and financial viability. Public administration staff must review applications for new hydrogen-related plants and facilities, and economic development agencies must recognize the opportunities, as well as challenges, that the hydrogen economy presents for their region. All of these individuals need ongoing, comprehensive, and up-to-date training and education.

Source: MU

Olaf Lies, Minister for the Environment, Energy, Building and Climate Protection in Lower Saxony (center), is committed to the rapid development of the hydrogen economy. To this end, he has, among other things, launched a funding guideline to support companies like aha in Hanover in their conversion to sustainable energies. ©NWN

What qualifications do skilled workers need to work with renewable energies, but especially with hydrogen?

RC: This depends on the industry in which they work: But in general, in addition to the qualification they already have, any professional who wants to deal with renewable energy and especially hydrogen needs the necessary expertise. Furthermore, they should be able to look at renewable energy projects and also hydrogen economy projects from different perspectives, understand them if possible and communicate with different actors/trades in these fields. 

 

Which professionals, for example, take part in the continuing education program at the University of Oldenburg?

RC: Our participants include professionals from a wide variety of backgrounds: Engineers who want to gain specific expertise on hydrogen technologies, bankers who want to address specific economic questions about hydrogen timelines and price drivers, and so on. Importantly, however, these professionals are asked to work together to develop a virtual hydrogen project that encompasses all of these aspects, so that each can not only contribute his or her own discipline, but also learn to see through the eyes of the other and get a complete picture of the entire project process.

 

Continuing education is offered in a combination of classroom and online sessions, as well as field trips. ©AdobeStock

"Leaders need to understand the "ecosystem" of the hydrogen economy."

 

Now we've talked about skilled workers. In which areas do managers need to undergo further training in order to stay on the ball?

RC: Executives must decide if and how the hydrogen economy is relevant to their company or division and, if so, establish a business segment. The decentralized nature of renewables creates opportunities for many companies whose executives need to understand the hydrogen economy "ecosystem." This requires a basic technical understanding as well as knowledge of the components, dimensions, players and political dimensions of hydrogen projects, as well as the hydrogen economy. They also need to be able to assess possible business models and know which competencies and people they need for a hydrogen project.

Your assessment: Will we see completely new training occupations, or will the topic of hydrogen have to be integrated into existing training programs?

RC: In the short term, the urgent need for specialists must be met with our own new courses and programs, such as ours. We aim to provide the necessary technical and overview knowledge as well as the different perspectives and an independent orientation ability in the hydrogen economy in six months with a high-quality academic further education, which has a strong practical orientation. In the medium term, I believe that the subject of hydrogen will become more and more part of the normal educational canon. But also in this phase I see good perspectives for our program of further education for specialists and executives of the hydrogen economy.

Source: NWN

Hydrogen for professionals and managers

The continuing education program of the Carl von Ossietzky University Oldenburg, Leibniz University Hannover and the Fraunhofer Institute for Wind Energy Systems IWES builds on existing professional qualifications and experience of the participants and enables them to assess, initiate and manage hydrogen projects. During the training, a hydrogen project is realistically planned and calculated.

Qualification offers in the hydrogen sector

The successful development of a hydrogen economy requires comprehensive education and training in many sectors. The NWN summarizes the current offers here and provides an overview of the relevant qualifications in Lower Saxony.

 

©Shutterstock

Imprint

.

Privacy policy